Target size of the adenosine Ri receptor (original) (raw)

Abstract

The adenosine receptor of rat cerebral-cortical membranes was examined by radiation inactivation. In control membranes the receptor is distributed between high- and low-affinity states, that can be preferentially expressed by Mg2+ ions and guanine nucleotides respectively. Upon exposure to increasing doses of radiation, the high-affinity receptor decayed linearly as a function of radiation dose. This decay rate corresponded to a target size of 63,000 Da, when compared with the decay of the muscarinic cholinergic receptor that was also measured in these membranes.

621

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benovic J. L., Shorr R. G., Caron M. G., Lefkowitz R. J. The mammalian beta 2-adrenergic receptor: purification and characterization. Biochemistry. 1984 Sep 25;23(20):4510–4518. doi: 10.1021/bi00315a002. [DOI] [PubMed] [Google Scholar]
  2. Choca J. I., Kwatra M. M., Hosey M. M., Green R. D. Specific photoaffinity labelling of inhibitory adenosine receptors. Biochem Biophys Res Commun. 1985 Aug 30;131(1):115–121. doi: 10.1016/0006-291x(85)91778-4. [DOI] [PubMed] [Google Scholar]
  3. Houslay M. D., Ellory J. C., Smith G. A., Hesketh T. R., Stein J. M., Warren G. B., Metcalfe J. C. Exchange of partners in glucagon receptor-adenylate cyclase complexes. Physical evidence for the independent, mobile receptor model. Biochim Biophys Acta. 1977 Jun 2;467(2):208–219. doi: 10.1016/0005-2736(77)90197-3. [DOI] [PubMed] [Google Scholar]
  4. Kempner E. S., Schlegel W. Size determination of enzymes by radiation inactivation. Anal Biochem. 1979 Jan 1;92(1):2–10. doi: 10.1016/0003-2697(79)90617-1. [DOI] [PubMed] [Google Scholar]
  5. Kepner G. R., Macey R. I. Membrane enzyme systems. Molecular size determinations by radiation inactivation. Biochim Biophys Acta. 1968 Sep 17;163(2):188–203. doi: 10.1016/0005-2736(68)90097-7. [DOI] [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. Lilly L., Fraser C. M., Jung C. Y., Seeman P., Venter J. C. Molecular size of the canine and human brain D2 dopamine receptor as determined by radiation inactivation. Mol Pharmacol. 1983 Jul;24(1):10–14. [PubMed] [Google Scholar]
  8. Lo M. M., Barnard E. A., Dolly J. O. Size of acetylcholine receptors in the membrane. An improved version of the radiation inactivation method. Biochemistry. 1982 Apr 27;21(9):2210–2217. doi: 10.1021/bi00538a033. [DOI] [PubMed] [Google Scholar]
  9. Londos C., Cooper D. M., Wolff J. Subclasses of external adenosine receptors. Proc Natl Acad Sci U S A. 1980 May;77(5):2551–2554. doi: 10.1073/pnas.77.5.2551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  11. Rodbell M. The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature. 1980 Mar 6;284(5751):17–22. doi: 10.1038/284017a0. [DOI] [PubMed] [Google Scholar]
  12. Simon P., Swillens S., Dumont J. E. Size determination of an equilibrium enzymic system by radiation inactivation: theoretical considerations. Biochem J. 1982 Sep 1;205(3):477–483. doi: 10.1042/bj2050477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Stiles G. L., Daly D. T., Olsson R. A. The A1 adenosine receptor. Identification of the binding subunit by photoaffinity cross-linking. J Biol Chem. 1985 Sep 5;260(19):10806–10811. [PubMed] [Google Scholar]
  14. Swillens S. Simulation of an inhibitory equilibrium system. Aberrant proteinic target sizes as obtained by radiation inactivation. Biochem J. 1984 Aug 15;222(1):273–276. doi: 10.1042/bj2220273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Trost T., Schwabe U. Adenosine receptors in fat cells. Identification by (-)-N6-[3H]phenylisopropyladenosine binding. Mol Pharmacol. 1981 Mar;19(2):228–235. [PubMed] [Google Scholar]
  16. Venter J. C., Fraser C. M., Schaber J. S., Jung C. Y., Bolger G., Triggle D. J. Molecular properties of the slow inward calcium channel. Molecular weight determinations by radiation inactivation and covalent affinity labeling. J Biol Chem. 1983 Aug 10;258(15):9344–9348. [PubMed] [Google Scholar]
  17. Venter J. C. Muscarinic cholinergic receptor structure. Receptor size, membrane orientation, and absence of major phylogenetic structural diversity. J Biol Chem. 1983 Apr 25;258(8):4842–4848. [PubMed] [Google Scholar]
  18. Yeung S. M., Fossom L. H., Gill D. L., Cooper D. M. Magnesium ion exerts a central role in the regulation of inhibitory adenosine receptors. Biochem J. 1985 Jul 1;229(1):91–100. doi: 10.1042/bj2290091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Yeung S. M., Green R. D. Agonist and antagonist affinities for inhibitory adenosine receptors are reciprocally affected by 5'-guanylylimidodiphosphate or N-ethylmaleimide. J Biol Chem. 1983 Feb 25;258(4):2334–2339. [PubMed] [Google Scholar]
  20. Yeung S. M., Green R. D. [3H]5'-N-ethylcarboxamide adenosine binds to both Ra and Ri adenosine receptors in rat striatum. Naunyn Schmiedebergs Arch Pharmacol. 1984 Mar;325(3):218–225. doi: 10.1007/BF00495947. [DOI] [PubMed] [Google Scholar]
  21. van Calker D., Müller M., Hamprecht B. Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem. 1979 Nov;33(5):999–1005. doi: 10.1111/j.1471-4159.1979.tb05236.x. [DOI] [PubMed] [Google Scholar]