Stimulus-response coupling in human platelets. Changes evoked by platelet-activating factor in cytoplasmic free calcium monitored with the fluorescent calcium indicator quin2 (original) (raw)

Abstract

The role of changes in cytoplasmic free calcium, [Ca2+]i, in the responses to platelet-activating factor (PAF) was studied in human platelets loaded with the fluorescent calcium indicator, quin2. In the presence of 1 mM external calcium, PAF raised [Ca2+]i 8-10-fold in a few seconds to peak near 1 microM. [Ca2+]i then declined over several minutes towards the basal level. In the absence of external calcium there was a much smaller increase in [Ca2+]i of similar pattern. These findings suggest that PAF increases [Ca2+]i partly by discharge of internal Ca2+, but mainly by stimulated influx. Blockade of cyclo-oxygenase with aspirin only slightly reduced the [Ca2+]i changes, indicating that thromboxane A2 is not a major mediator of the calcium movements. In control conditions PAF could stimulate shape-change, aggregation and secretion. Aggregation and secretion were roughly halved by blockade of cyclo-oxygenase. Shape-change and secretion still occurred under conditions where the [Ca2+]i rise was small or suppressed, indicating a role for intracellular activators other than Ca2+. The possible involvement of products of phosphoinositide breakdown is discussed.

819

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASTER R. H., JANDL J. H. PLATELET SEQUESTRATION IN MAN. I. METHODS. J Clin Invest. 1964 May;43:843–855. doi: 10.1172/JCI104970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agranoff B. W., Murthy P., Seguin E. B. Thrombin-induced phosphodiesteratic cleavage of phosphatidylinositol bisphosphate in human platelets. J Biol Chem. 1983 Feb 25;258(4):2076–2078. [PubMed] [Google Scholar]
  3. BORN G. V. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature. 1962 Jun 9;194:927–929. doi: 10.1038/194927b0. [DOI] [PubMed] [Google Scholar]
  4. Billah M. M., Lapetina E. G. Rapid decrease of phosphatidylinositol 4,5-bisphosphate in thrombin-stimulated platelets. J Biol Chem. 1982 Nov 10;257(21):12705–12708. [PubMed] [Google Scholar]
  5. Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa U., Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem. 1982 Jul 10;257(13):7847–7851. [PubMed] [Google Scholar]
  6. Chesney C. M., Pifer D. D., Byers L. W., Muirhead E. E. Effect of platelet-activating factor (PAF) on human platelets. Blood. 1982 Mar;59(3):582–585. [PubMed] [Google Scholar]
  7. Costa J. L., Detwiler T. C., Feinman R. D., Murphy D. L., Patlak C. S., Pettigrew K. D. Quantitative evaluation of the loss of human platelet dense bodies following stimulation by thrombin or A23187. J Physiol. 1977 Jan;264(1):297–306. doi: 10.1113/jphysiol.1977.sp011669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Demopoulos C. A., Pinckard R. N., Hanahan D. J. Platelet-activating factor. Evidence for 1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid chemical mediators). J Biol Chem. 1979 Oct 10;254(19):9355–9358. [PubMed] [Google Scholar]
  9. Feinstein M. B. Release of intracellular membrane-bound calcium precedes the onset of stimulus-induced exocytosis in platelets. Biochem Biophys Res Commun. 1980 Mar 28;93(2):593–600. doi: 10.1016/0006-291x(80)91119-5. [DOI] [PubMed] [Google Scholar]
  10. Hallam T. J., Scrutton M. C., Wallis R. B. The role of 1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine (AcGEPC) and palmitoyl-lysophosphatidate in the responses of human blood platelets to collagen and thrombin. FEBS Lett. 1983 Oct 3;162(1):142–146. doi: 10.1016/0014-5793(83)81066-7. [DOI] [PubMed] [Google Scholar]
  11. Hendrickson H. S. Physical properties and interactions of phosphoinositides. Ann N Y Acad Sci. 1969 Oct 17;165(2):668–676. [PubMed] [Google Scholar]
  12. Henson P. M. Activation and desensitization of platelets by platelet-activating factor (PAF) derived from IgE-sensitized basophils. I. Characteristics of the secretory response. J Exp Med. 1976 Apr 1;143(4):937–952. doi: 10.1084/jem.143.4.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hesketh T. R., Smith G. A., Moore J. P., Taylor M. V., Metcalfe J. C. Free cytoplasmic calcium concentration and the mitogenic stimulation of lymphocytes. J Biol Chem. 1983 Apr 25;258(8):4876–4882. [PubMed] [Google Scholar]
  14. Kaibuchi K., Sano K., Hoshijima M., Takai Y., Nishizuka Y. Phosphatidylinositol turnover in platelet activation; calcium mobilization and protein phosphorylation. Cell Calcium. 1982 Oct;3(4-5):323–335. doi: 10.1016/0143-4160(82)90020-3. [DOI] [PubMed] [Google Scholar]
  15. Knight D. E., Hallam T. J., Scrutton M. C. Agonist selectivity and second messenger concentration in Ca2+-mediated secretion. Nature. 1982 Mar 18;296(5854):256–257. doi: 10.1038/296256a0. [DOI] [PubMed] [Google Scholar]
  16. Käser-Glanzmann R., Gerber E., Lüscher E. F. Regulation of the intracellular calcium level in human blood platelets: cyclic adenosine 3',5'-monophosphate dependent phosphorylation of a 22,000 dalton component in isolated Ca2+-accumulating vesicles. Biochim Biophys Acta. 1979 Dec 12;558(3):344–347. doi: 10.1016/0005-2736(79)90271-2. [DOI] [PubMed] [Google Scholar]
  17. Lages B., Scrutton M. C., Holmsen H., Day H. J., Weiss H. J. Metal ion contents of gel-filtered platelets from patients with storage pool disease. Blood. 1975 Jul;46(1):119–130. [PubMed] [Google Scholar]
  18. Lapetina E. G., Siegel F. L. Shape change induced in human platelets by platelet-activating factor. Correlation with the formation of phosphatidic acid and phosphorylation of a 40,000-dalton protein. J Biol Chem. 1983 Jun 25;258(12):7241–7244. [PubMed] [Google Scholar]
  19. Lee T. C., Malone B., Blank M. L., Snyder F. 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet-activating factor) stimulates calcium influx in rabbit platelets. Biochem Biophys Res Commun. 1981 Oct 30;102(4):1262–1268. doi: 10.1016/s0006-291x(81)80147-7. [DOI] [PubMed] [Google Scholar]
  20. Lee T. C., Malone B., Snyder F. Stimulation of calcium uptake by 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet-activating factor) in rabbit platelets: possible involvement of the lipoxygenase pathway. Arch Biochem Biophys. 1983 May;223(1):33–39. doi: 10.1016/0003-9861(83)90568-4. [DOI] [PubMed] [Google Scholar]
  21. Lew V. L., Tsien R. Y., Miner C., Bookchin R. M. Physiological [Ca2+]i level and pump-leak turnover in intact red cells measured using an incorporated Ca chelator. Nature. 1982 Jul 29;298(5873):478–481. doi: 10.1038/298478a0. [DOI] [PubMed] [Google Scholar]
  22. MacIntyre D. E., Pollock W. K. Platelet-activating factor stimulates phosphatidylinositol turnover in human platelets. Biochem J. 1983 May 15;212(2):433–437. doi: 10.1042/bj2120433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. MacIntyre D. E., Rink T. J. The role of platelet membrane potential in the initiation of platelet aggregation. Thromb Haemost. 1982 Feb 26;47(1):22–26. [PubMed] [Google Scholar]
  24. Marcus A. J., Safier L. B., Ullman H. L., Wong K. T., Broekman M. J., Weksler B. B., Kaplan K. L. Effects of acetyl glyceryl ether phosphorylcholine on human platelet function in vitro. Blood. 1981 Nov;58(5):1027–1031. [PubMed] [Google Scholar]
  25. McManus L. M., Hanahan D. J., Pinckard R. N. Human platelet stimulation by acetyl glyceryl ether phosphorylcholine. J Clin Invest. 1981 Mar;67(3):903–906. doi: 10.1172/JCI110108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Michell R. H. Stimulated inositol lipid metabolism: an introduction. Cell Calcium. 1982 Oct;3(4-5):285–294. doi: 10.1016/0143-4160(82)90017-3. [DOI] [PubMed] [Google Scholar]
  27. Motulsky H. J., Snavely M. D., Hughes R. J., Insel P. A. Interaction of verapamil and other calcium channel blockers with alpha 1- and alpha 2-adrenergic receptors. Circ Res. 1983 Feb;52(2):226–231. doi: 10.1161/01.res.52.2.226. [DOI] [PubMed] [Google Scholar]
  28. Nishizuka Y. Calcium, phospholipid turnover and transmembrane signalling. Philos Trans R Soc Lond B Biol Sci. 1983 Jul 5;302(1108):101–112. doi: 10.1098/rstb.1983.0043. [DOI] [PubMed] [Google Scholar]
  29. Pozzan T., Arslan P., Tsien R. Y., Rink T. J. Anti-immunoglobulin, cytoplasmic free calcium, and capping in B lymphocytes. J Cell Biol. 1982 Aug;94(2):335–340. doi: 10.1083/jcb.94.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rink T. J., Sanchez A., Hallam T. J. Diacylglycerol and phorbol ester stimulate secretion without raising cytoplasmic free calcium in human platelets. Nature. 1983 Sep 22;305(5932):317–319. doi: 10.1038/305317a0. [DOI] [PubMed] [Google Scholar]
  31. Rink T. J., Smith S. W., Tsien R. Y. Cytoplasmic free Ca2+ in human platelets: Ca2+ thresholds and Ca-independent activation for shape-change and secretion. FEBS Lett. 1982 Nov 1;148(1):21–26. doi: 10.1016/0014-5793(82)81234-9. [DOI] [PubMed] [Google Scholar]
  32. Siess W., Cuatrecasas P., Lapetina E. G. A role for cyclooxygenase products in the formation of phosphatidic acid in stimulated human platelets. Differential mechanisms of action of thrombin and collagen. J Biol Chem. 1983 Apr 25;258(8):4683–4686. [PubMed] [Google Scholar]
  33. Streb H., Irvine R. F., Berridge M. J., Schulz I. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature. 1983 Nov 3;306(5938):67–69. doi: 10.1038/306067a0. [DOI] [PubMed] [Google Scholar]
  34. Tsien R. Y., Pozzan T., Rink T. J. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol. 1982 Aug;94(2):325–334. doi: 10.1083/jcb.94.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]