Modulation of erythropoietin formation by changes in blood volume in conscious dogs (original) (raw)

Abstract

1. A possible influence of the filling of the circulatory system on the plasma concentration of erythropoietin, which is the major regulator of erythrocyte formation, was investigated in conscious dogs. 2. Over an experimental period of 5 h, the animals were subjected to either haemorrhage (hypovolaemia), blood volume expansion (hypervolaemia), or exchange transfusion of blood with dextran (isovolaemic anaemia). 3. A reduction of blood volume by 20% induced by haemorrhage increased plasma erythropoietin levels approximately 1.5-fold in the absence of significant changes in haematocrit. 4. An expansion of blood volume by 12% induced by an intravenous infusion of dextran did not change plasma erythropoietin levels, although the haematocrit decreased by 0.04. 5. A reduction of the haematocrit by 0.12 in the absence of changes in blood volume induced by an isovolaemic exchange transfusion (dextran vs. blood) increased plasma erythropoietin levels approximately 3-fold. 6. Total renal oxygen supply did not change in any of the three experimental protocols. 7. These data indicate that in dogs the erythropoietin production rate is modulated by changes in blood volume, and suggest a possible role of erythropoietin in the regulation of blood volume.

181

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamson J. W. Familial polycythemia. Semin Hematol. 1975 Oct;12(4):383–396. [PubMed] [Google Scholar]
  2. Bachmann S., Le Hir M., Eckardt K. U. Co-localization of erythropoietin mRNA and ecto-5'-nucleotidase immunoreactivity in peritubular cells of rat renal cortex indicates that fibroblasts produce erythropoietin. J Histochem Cytochem. 1993 Mar;41(3):335–341. doi: 10.1177/41.3.8429197. [DOI] [PubMed] [Google Scholar]
  3. Berlin N. I. Diagnosis and classification of the polycythemias. Semin Hematol. 1975 Oct;12(4):339–351. [PubMed] [Google Scholar]
  4. Bondurant M. C., Koury M. J. Anemia induces accumulation of erythropoietin mRNA in the kidney and liver. Mol Cell Biol. 1986 Jul;6(7):2731–2733. doi: 10.1128/mcb.6.7.2731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buckey J. C., Gaffney F. A., Lane L. D., Levine B. D., Watenpaugh D. E., Blomqvist C. G. Central venous pressure in space. N Engl J Med. 1993 Jun 24;328(25):1853–1854. doi: 10.1056/NEJM199306243282516. [DOI] [PubMed] [Google Scholar]
  6. Cowley A. W., Jr Long-term control of arterial blood pressure. Physiol Rev. 1992 Jan;72(1):231–300. doi: 10.1152/physrev.1992.72.1.231. [DOI] [PubMed] [Google Scholar]
  7. Cowley A. W., Jr, Merrill D. C., Quillen E. W., Jr, Skelton M. M. Long-term blood pressure and metabolic effects of vasopressin with servo-controlled fluid volume. Am J Physiol. 1984 Sep;247(3 Pt 2):R537–R545. doi: 10.1152/ajpregu.1984.247.3.R537. [DOI] [PubMed] [Google Scholar]
  8. Cowley A. W., Jr, Skelton M. M. Dominance of colloid osmotic pressure in renal excretion after isotonic volume expansion. Am J Physiol. 1991 Oct;261(4 Pt 2):H1214–H1225. doi: 10.1152/ajpheart.1991.261.4.H1214. [DOI] [PubMed] [Google Scholar]
  9. Dennis J., Wyatt D. G. Effect of hematocrit value upon electromagnetic flowmeter sensitivity. Circ Res. 1969 Jun;24(6):875–886. doi: 10.1161/01.res.24.6.875. [DOI] [PubMed] [Google Scholar]
  10. DiBona G. F. Neural control of renal function: cardiovascular implications. Hypertension. 1989 Jun;13(6 Pt 1):539–548. doi: 10.1161/01.hyp.13.6.539. [DOI] [PubMed] [Google Scholar]
  11. Eckardt K. U., Boutellier U., Kurtz A., Schopen M., Koller E. A., Bauer C. Rate of erythropoietin formation in humans in response to acute hypobaric hypoxia. J Appl Physiol (1985) 1989 Apr;66(4):1785–1788. doi: 10.1152/jappl.1989.66.4.1785. [DOI] [PubMed] [Google Scholar]
  12. Eckardt K. U., Dittmer J., Neumann R., Bauer C., Kurtz A. Decline of erythropoietin formation at continuous hypoxia is not due to feedback inhibition. Am J Physiol. 1990 May;258(5 Pt 2):F1432–F1437. doi: 10.1152/ajprenal.1990.258.5.F1432. [DOI] [PubMed] [Google Scholar]
  13. Eckardt K. U., Koury S. T., Tan C. C., Schuster S. J., Kaissling B., Ratcliffe P. J., Kurtz A. Distribution of erythropoietin producing cells in rat kidneys during hypoxic hypoxia. Kidney Int. 1993 Apr;43(4):815–823. doi: 10.1038/ki.1993.115. [DOI] [PubMed] [Google Scholar]
  14. Eckardt K. U., Kurtz A., Bauer C. Regulation of erythropoietin production is related to proximal tubular function. Am J Physiol. 1989 May;256(5 Pt 2):F942–F947. doi: 10.1152/ajprenal.1989.256.5.F942. [DOI] [PubMed] [Google Scholar]
  15. Eckardt K. U., Kurtz A., Hirth P., Scigalla P., Wieczorek L., Bauer C. Evaluation of the stability of human erythropoietin in samples for radioimmunoassay. Klin Wochenschr. 1988 Mar 15;66(6):241–245. doi: 10.1007/BF01748163. [DOI] [PubMed] [Google Scholar]
  16. Eckardt K. U., Ratcliffe P. J., Tan C. C., Bauer C., Kurtz A. Age-dependent expression of the erythropoietin gene in rat liver and kidneys. J Clin Invest. 1992 Mar;89(3):753–760. doi: 10.1172/JCI115652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ehmke H., Persson P. B., Seyfarth M., Kirchheim H. R. Neurogenic control of pressure natriuresis in conscious dogs. Am J Physiol. 1990 Sep;259(3 Pt 2):F466–F473. doi: 10.1152/ajprenal.1990.259.3.F466. [DOI] [PubMed] [Google Scholar]
  18. Ehmke H., Persson P., Kögler U., Lang R., Kirchheim H. ANP and sodium excretion during acute baroreflex hypertension in conscious dogs. Am J Physiol. 1989 May;256(5 Pt 2):R1044–R1049. doi: 10.1152/ajpregu.1989.256.5.R1044. [DOI] [PubMed] [Google Scholar]
  19. Erslev A. J., Caro J., Besarab A. Why the kidney? Nephron. 1985;41(3):213–216. doi: 10.1159/000183585. [DOI] [PubMed] [Google Scholar]
  20. Fan F. C., Chen R. Y., Schuessler G. B., Chien S. Effects of hematocrit variations on regional hemodynamics and oxygen transport in the dog. Am J Physiol. 1980 Apr;238(4):H545–H522. doi: 10.1152/ajpheart.1980.238.4.H545. [DOI] [PubMed] [Google Scholar]
  21. GLICK G., PLAUTH W. H., Jr, BRAUNWALD E. ROLE OF THE AUTONOMIC NERVOUS SYSTEM IN THE CIRCULATORY RESPONSE TO ACUTELY INDUCED ANEMIA IN UNANESTHETIZED DOGS. J Clin Invest. 1964 Nov;43:2112–2124. doi: 10.1172/JCI105085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gross R., Ruffmann K., Kirchheim H. The separate and combined influences of common carotid occlusion and nonhypotensive hemorrhage on kidney blood flow. Pflugers Arch. 1979 Feb 14;379(1):81–88. doi: 10.1007/BF00622908. [DOI] [PubMed] [Google Scholar]
  23. Grupp I., Grupp G., Holmes J. C., Fowler N. O. Regional blood flow in anemia. J Appl Physiol. 1972 Oct;33(4):456–461. doi: 10.1152/jappl.1972.33.4.456. [DOI] [PubMed] [Google Scholar]
  24. Hoeldtke R. D., Streeten D. H. Treatment of orthostatic hypotension with erythropoietin. N Engl J Med. 1993 Aug 26;329(9):611–615. doi: 10.1056/NEJM199308263290904. [DOI] [PubMed] [Google Scholar]
  25. Jelkmann W. Erythropoietin: structure, control of production, and function. Physiol Rev. 1992 Apr;72(2):449–489. doi: 10.1152/physrev.1992.72.2.449. [DOI] [PubMed] [Google Scholar]
  26. Koury M. J., Bondurant M. C. The molecular mechanism of erythropoietin action. Eur J Biochem. 1992 Dec 15;210(3):649–663. doi: 10.1111/j.1432-1033.1992.tb17466.x. [DOI] [PubMed] [Google Scholar]
  27. Koury S. T., Koury M. J., Bondurant M. C., Caro J., Graber S. E. Quantitation of erythropoietin-producing cells in kidneys of mice by in situ hybridization: correlation with hematocrit, renal erythropoietin mRNA, and serum erythropoietin concentration. Blood. 1989 Aug 1;74(2):645–651. [PubMed] [Google Scholar]
  28. Krantz S. B. Erythropoietin. Blood. 1991 Feb 1;77(3):419–434. [PubMed] [Google Scholar]
  29. Krieger J. E., Cowley A. W., Jr Prevention of salt angiotensin II hypertension by servo control of body water. Am J Physiol. 1990 Apr;258(4 Pt 2):H994–1003. doi: 10.1152/ajpheart.1990.258.4.H994. [DOI] [PubMed] [Google Scholar]
  30. Leach C. S., Johnson P. C. Influence of spaceflight on erythrokinetics in man. Science. 1984 Jul 13;225(4658):216–218. doi: 10.1126/science.6729477. [DOI] [PubMed] [Google Scholar]
  31. Maxwell P. H., Osmond M. K., Pugh C. W., Heryet A., Nicholls L. G., Tan C. C., Doe B. G., Ferguson D. J., Johnson M. H., Ratcliffe P. J. Identification of the renal erythropoietin-producing cells using transgenic mice. Kidney Int. 1993 Nov;44(5):1149–1162. doi: 10.1038/ki.1993.362. [DOI] [PubMed] [Google Scholar]
  32. Miller M. E., Cronkite E. P., Garcia J. F. Plasma levels of immunoreactive erythropoietin after acute blood loss in man. Br J Haematol. 1982 Dec;52(4):545–549. doi: 10.1111/j.1365-2141.1982.tb03929.x. [DOI] [PubMed] [Google Scholar]
  33. Miller M. E., Garcia J. F., Cohen R. A., Cronkite E. P., Moccia G., Acevedo J. Diurnal levels of immunoreactive erythropoietin in normal subjects and subjects with chronic lung disease. Br J Haematol. 1981 Oct;49(2):189–200. doi: 10.1111/j.1365-2141.1981.tb07215.x. [DOI] [PubMed] [Google Scholar]
  34. Morita H., Vatner S. F. Effects of hemorrhage on renal nerve activity in conscious dogs. Circ Res. 1985 Nov;57(5):788–793. doi: 10.1161/01.res.57.5.788. [DOI] [PubMed] [Google Scholar]
  35. Pagel H., Jelkmann W., Weiss C. Isolated serum-free perfused rat kidneys release immunoreactive erythropoietin in response to hypoxia. Endocrinology. 1991 May;128(5):2633–2638. doi: 10.1210/endo-128-5-2633. [DOI] [PubMed] [Google Scholar]
  36. Persson P. B., Ehmke H., Kirchheim H. R., Janssen B., Baumann J. E., Just A., Nafz B. Autoregulation and non-homeostatic behaviour of renal blood flow in conscious dogs. J Physiol. 1993 Mar;462:261–273. doi: 10.1113/jphysiol.1993.sp019554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ratcliffe P. J., Jones R. W., Phillips R. E., Nicholls L. G., Bell J. I. Oxygen-dependent modulation of erythropoietin mRNA levels in isolated rat kidneys studied by RNase protection. J Exp Med. 1990 Aug 1;172(2):657–660. doi: 10.1084/jem.172.2.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Reeves R. B., Park J. S., Lapennas G. N., Olszowka A. J. Oxygen affinity and Bohr coefficients of dog blood. J Appl Physiol Respir Environ Exerc Physiol. 1982 Jul;53(1):87–95. doi: 10.1152/jappl.1982.53.1.87. [DOI] [PubMed] [Google Scholar]
  39. Schadt J. C., Ludbrook J. Hemodynamic and neurohumoral responses to acute hypovolemia in conscious mammals. Am J Physiol. 1991 Feb;260(2 Pt 2):H305–H318. doi: 10.1152/ajpheart.1991.260.2.H305. [DOI] [PubMed] [Google Scholar]
  40. Scholz H., Schurek H. J., Eckardt K. U., Kurtz A., Bauer C. Oxygen-dependent erythropoietin production by the isolated perfused rat kidney. Pflugers Arch. 1991 Apr;418(3):228–233. doi: 10.1007/BF00370520. [DOI] [PubMed] [Google Scholar]
  41. Schurek H. J., Jost U., Baumgärtl H., Bertram H., Heckmann U. Evidence for a preglomerular oxygen diffusion shunt in rat renal cortex. Am J Physiol. 1990 Dec;259(6 Pt 2):F910–F915. doi: 10.1152/ajprenal.1990.259.6.F910. [DOI] [PubMed] [Google Scholar]
  42. Schuster S. J., Wilson J. H., Erslev A. J., Caro J. Physiologic regulation and tissue localization of renal erythropoietin messenger RNA. Blood. 1987 Jul;70(1):316–318. [PubMed] [Google Scholar]
  43. Wide L., Bengtsson C., Birgegård G. Circadian rhythm of erythropoietin in human serum. Br J Haematol. 1989 May;72(1):85–90. doi: 10.1111/j.1365-2141.1989.tb07657.x. [DOI] [PubMed] [Google Scholar]