Acetylcholine increases the breakdown of triphosphoinositide of rabbit iris muscle prelabelled with [32P] phosphate (original) (raw)

Abstract

1. Paired iris smooth muscles from rabbits were incubated for 30 min at 37 degrees C in an iso-osmotic salt medium containg glucose, inositol, cytidine and [32P]phosphate. 2. One of the pair was then incubated at 37 degrees C for 10 min in unlabelled medium containing 10mM-2-deoxyglucose and the other was incubated in the presence of acetylcholine plus eserine (0.05mM each). 2-Deoxyglucose, which was included in the incubation medium to minimize the biosynthesis of triphosphoinositide from ATP and diphosphoinositide, decreased the amount of labelled ATP by 71% and inhibited further 32P incorporation from ATP into triphosphoinositide by almost 30%. 3. Acetylcholine (0.05mM) increased significantly the loss of 32P from triphosphoinositide (the 'triphosphoinositide effect') in 32P-labelled iris muscle. This effect was measured both chemically and radiochemically. It was also observed when 32Pi was replaced by myo-[3H]inositol in the incubation medium. 4. The triphosphoinositide effect was blocked by atropine but not by D-tubocurarine. Further, muscarinic but not nicotinic agonists were found to provoke this effect. 5. Acetylcholine decreased by 28% the 32P incorporation into triphosphoinositide, presumably by stimulating its breakdown. This decrement in triphosphoinositide was blocked by atropine, but not by D-tubocurarine. 6. The triphosphoinositide effect was accompanied by a significant increase in 32P labelling, but not tissue concentration, of phosphatidylinositol and phosphatidic acid. The possible relationship between the loss of 32P label from triphosphoinositide in response to acetylcholine and the concomitant increase in that of phosphatidylinositol and phosphatidic acid is discussed. 7. The presence of triphosphoinositide phosphomonoesterase, the enzyme that might be stimulated in the iris smooth muscle by the neurotransmitter, was demonstrated, and, under our methods of homogenization and assay, more than 80% of its activity was localized in the particulate fraction.

61

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdel-Latif A. A., Akhtar R. A. Acetylcholine causes an increase in the hydrolysis of triphosphoinositide pre-labelled with [32P]phosphate or [3H]myo-inositol and a corresponding increase in the labelling of phosphatidylinositol and phosphatidic acid in rabbit iris muscle. Biochem Soc Trans. 1976;4(2):317–321. doi: 10.1042/bst0040317. [DOI] [PubMed] [Google Scholar]
  2. Abdel-Latif A. A. Effects of neurotransmitters and other pharmacological agents on 32Pi incorporation into phospholipids of the iris muscle of the rabbit. Life Sci. 1974 Sep 1;15(5):961–973. doi: 10.1016/0024-3205(74)90011-3. [DOI] [PubMed] [Google Scholar]
  3. Abdel-Latif A. A., Green K., Matheny J. L., McPherson J. C., Jr, Smith J. P. Effects of norepinephrine and acetylcholine on 32P incorporation into phospholipids of the rabbit iris muscle following unilateral superior cervical ganglionectomy. Life Sci. 1975 Dec 15;17(12):1821–1828. doi: 10.1016/0024-3205(75)90465-8. [DOI] [PubMed] [Google Scholar]
  4. Abdel-Latif A. A., Owen M. P., Matheny J. L. Adrenergic and cholinergic stimulation of 32P-labeling of phospholipids in rabbit iris muscle. Biochem Pharmacol. 1976 Feb 15;25(4):461–469. doi: 10.1016/0006-2952(76)90350-6. [DOI] [PubMed] [Google Scholar]
  5. Abdel-Latif A. A., Smith J. P. Effects of DL-propranolol on the synthesis of glycerolipids by rabbit iris muscle. Biochem Pharmacol. 1976 Aug 1;25(15):1697–1704. doi: 10.1016/0006-2952(76)90401-9. [DOI] [PubMed] [Google Scholar]
  6. Abdel-Latif A. A., Smith J. P. In vivo incorporation of choline, glycerol and orthophosphate into lecithin and other phospholipids of subcellular fractions of rat cerebrum. Biochim Biophys Acta. 1970 Oct 6;218(1):134–140. doi: 10.1016/0005-2760(70)90100-1. [DOI] [PubMed] [Google Scholar]
  7. Abdel-Latif A. A., Smith J. P. Studies on choline transport and metabolism in rat brain synaptosomes. Biochem Pharmacol. 1972 Nov 15;21(22):3005–3021. doi: 10.1016/0006-2952(72)90193-1. [DOI] [PubMed] [Google Scholar]
  8. Abdel-Latif A. A., Yau S. J., Smith J. P. Effect of neurotransmitters on phospholipid metabolism in rat cerebral-cortex slices: cellular and subcellular distribution. J Neurochem. 1974 Mar;22(3):383–393. doi: 10.1111/j.1471-4159.1974.tb07604.x. [DOI] [PubMed] [Google Scholar]
  9. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  10. BROCKERHOFF H., BALLOU C. E. On the metabolism of the brain phosphoinositide complex. J Biol Chem. 1962 Jun;237:1764–1766. [PubMed] [Google Scholar]
  11. BROCKERHOFF H., BALLOU C. E. Phosphate incorporation in brain phosphionositides. J Biol Chem. 1962 Jan;237:49–52. [PubMed] [Google Scholar]
  12. Banschbach M. W., Geison R. L., Hokin-Neaverson M. Acetylcholine increases the level of diglyceride in mouse pancreas. Biochem Biophys Res Commun. 1974 Jun 4;58(3):714–718. doi: 10.1016/s0006-291x(74)80476-6. [DOI] [PubMed] [Google Scholar]
  13. Banschbach M. W., Geison R. L., O'Brien J. F. Use of (1-14C) aectic anhydride to quantitate diglycerides: a new analytical procedure. Anal Biochem. 1974 Jun;59(2):617–627. doi: 10.1016/0003-2697(74)90315-7. [DOI] [PubMed] [Google Scholar]
  14. Birnberger A. C., Birnberger K. L., Eliasson S. G., Simpson P. C. Effect of cyanide and electrical stimulation on phosphoinositide metabolism in lobster nerves. J Neurochem. 1971 Jul;18(7):1291–1298. doi: 10.1111/j.1471-4159.1971.tb00228.x. [DOI] [PubMed] [Google Scholar]
  15. Bleasdale J. E., Hawthorne J. N., Widlund L., Heilbronn E. Phospholipid turnover in Torpedo marmorata electric organ during discharge in vivo. Biochem J. 1976 Sep 15;158(3):557–565. doi: 10.1042/bj1580557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Bradford H. F. Respiration in vitro of synaptosomes from mammalian cerebral cortex. J Neurochem. 1969 May;16(5):675–684. doi: 10.1111/j.1471-4159.1969.tb06444.x. [DOI] [PubMed] [Google Scholar]
  17. Broekhuyse R. M. Phospholipids in tissues of the eye. I. Isolation, characterization and quantitative analysis by two-dimensional thin-layer chromatography of diacyl and vinyl-ether phospholipids. Biochim Biophys Acta. 1968 Mar 4;152(2):307–315. doi: 10.1016/0005-2760(68)90038-6. [DOI] [PubMed] [Google Scholar]
  18. Burnstock G., Campbell G., Satchell D., Smythe A. Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. Br J Pharmacol. 1970 Dec;40(4):668–688. doi: 10.1111/j.1476-5381.1970.tb10646.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Canessa de Scarnati O., Lapetina E. G. Adrenergic stimulation of phosphatidylinositol labelling in rat vas deferens. Biochim Biophys Acta. 1974 Sep 19;360(3):298–305. doi: 10.1016/0005-2760(74)90059-9. [DOI] [PubMed] [Google Scholar]
  20. Dawson R. M., Thompson W. The triphosphoinositide phosphomonoesterase of brain tissue. Biochem J. 1964 May;91(2):244–250. doi: 10.1042/bj0910244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. De Robertis E. Ultrastructure and cytochemistry of the synaptic region. The macromolecular components involved in nerve transmission are being studied. Science. 1967 May 19;156(3777):907–914. doi: 10.1126/science.156.3777.907. [DOI] [PubMed] [Google Scholar]
  22. Durell J., Garland J. T. Acetylcholine-stimulated phosphodiesteratic cleavage of phosphoinositides: hypothetical role in membrane depolarization. Ann N Y Acad Sci. 1969 Oct 17;165(2):743–754. [PubMed] [Google Scholar]
  23. Durell J., Garland J. T., Friedel R. O. Acetylcholine action: biochemical aspects. Science. 1969 Aug 29;165(3896):862–866. doi: 10.1126/science.165.3896.862. [DOI] [PubMed] [Google Scholar]
  24. Eichberg J., Hauser G. The subcellular distribution of polyphosphoinositides in myelinated and unmyelinated rat brain. Biochim Biophys Acta. 1973 Nov 29;326(2):210–223. doi: 10.1016/0005-2760(73)90247-6. [DOI] [PubMed] [Google Scholar]
  25. Garrett N. E., Garrett R. J., Talwalkar R. T., Lester R. L. Rapid breakdown of diphosphoinositide and triphosphoinositide in erythrocyte membranes. J Cell Physiol. 1976 Jan;87(1):63–69. doi: 10.1002/jcp.1040870109. [DOI] [PubMed] [Google Scholar]
  26. Gonzalez-Sastre F., Eichberg J., Hauser G. Metabolic pools of polyphosphoinositides in rat brain. Biochim Biophys Acta. 1971 Oct 5;248(1):96–104. [PubMed] [Google Scholar]
  27. HENDRICKSON H. S., BALLOU C. E. ION EXCHANGE CHROMATOGRAPHY OF INTACT BRAIN PHOSPHOINOSITIDES ON DIETHYLAMINOETHYL CELLULOSE BY GRADIENT SALT ELUTION IN A MIXED SOLVENT SYSTEM. J Biol Chem. 1964 May;239:1369–1373. [PubMed] [Google Scholar]
  28. HOKIN L. E., HOKIN M. R. Acetylcholine and the exchange of phosphate in phosphatidic acid in brain microsomes. J Biol Chem. 1958 Oct;233(4):822–826. [PubMed] [Google Scholar]
  29. HOKIN L. E., HOKIN M. R. Effects of acetylcholine on the turnover of phosphoryl units in individual phospholipids of pancreas slices and brain cortex slices. Biochim Biophys Acta. 1955 Sep;18(1):102–110. doi: 10.1016/0006-3002(55)90013-5. [DOI] [PubMed] [Google Scholar]
  30. Hawthorne J. N., White D. A. Myo-inositol lipids. Vitam Horm. 1975;33:529–573. doi: 10.1016/s0083-6729(08)60972-3. [DOI] [PubMed] [Google Scholar]
  31. Hayashi K., Yagihara Y., Nakamura I., Yamazoe S. Studies on brain phospholipids. IV. Post-mortem breakdown of phosphoinositides and phosphatidic acid, and P32-incorporation into phospholipids in various states of the tissue. J Biochem. 1966 Jul;60(1):42–51. doi: 10.1093/oxfordjournals.jbchem.a128397. [DOI] [PubMed] [Google Scholar]
  32. Hokin-Neaverson M. Acetylcholine causes a net decrease in phosphatidylinositol and a net increase in phosphatidic acid in mouse pancreas. Biochem Biophys Res Commun. 1974 Jun 4;58(3):763–768. doi: 10.1016/s0006-291x(74)80483-3. [DOI] [PubMed] [Google Scholar]
  33. Hokin-Neaverson M., Sadeghian K., Majumder A. L., Eisenberg F., Jr Inositol is the water-soluble product of acetylcholine-stimulated breakdown of phosphatidylinositol in mouse pancreas. Biochem Biophys Res Commun. 1975 Dec 15;67(4):1537–1544. doi: 10.1016/0006-291x(75)90201-6. [DOI] [PubMed] [Google Scholar]
  34. Hokin L. E. Autoradiographic localization of the acetylcholine-stimulated synthesis of phosphatidylinositol in the superior cervical ganglion. Proc Natl Acad Sci U S A. 1965 Jun;53(6):1369–1376. doi: 10.1073/pnas.53.6.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Hokin L. E. Dynamic aspects of phospholipids during protein secretion. Int Rev Cytol. 1968;23:187–208. doi: 10.1016/s0074-7696(08)60272-7. [DOI] [PubMed] [Google Scholar]
  36. Jafferji S. S., Michell R. H. Muscarinic cholinergic stimulation of phosphatidylinositol turnover in the longitudinal smooth muscle of guinea-pig ileum. Biochem J. 1976 Mar 15;154(3):653–657. doi: 10.1042/bj1540653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Jones L. M., Michell R. H. Breakdown of phosphatidylinositol provoked by muscarinic cholinergic stimulation of rat parotid-gland fragments. Biochem J. 1974 Sep;142(3):583–590. doi: 10.1042/bj1420583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Jungalwala F. B., Freinkel N., Dawson R. M. The metabolism of phosphatidylinositol in the thyroid gland of the pig. Biochem J. 1971 Jun;123(1):19–33. doi: 10.1042/bj1230019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Kai M., Hawthorne J. N. Physiological significance of polyphosphoinositides in brain. Ann N Y Acad Sci. 1969 Oct 17;165(2):761–773. [PubMed] [Google Scholar]
  40. LARRABEE M. G., KLINGMAN J. D., LEICHT W. S. EFFECTS OF TEMPERATURE, CALCIUM AND ACTIVITY ON PHOSPHOLIPID METABOLISM IN A SYMPATHETIC GANGLION. J Neurochem. 1963 Aug;10:549–570. doi: 10.1111/j.1471-4159.1963.tb05053.x. [DOI] [PubMed] [Google Scholar]
  41. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  42. Michell R. H. Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta. 1975 Mar 25;415(1):81–47. doi: 10.1016/0304-4157(75)90017-9. [DOI] [PubMed] [Google Scholar]
  43. PAULUS H., KENNEDY E. P. The enzymatic synthesis of inositol monophosphatide. J Biol Chem. 1960 May;235:1303–1311. [PubMed] [Google Scholar]
  44. Palmer F. B., Rossiter R. J. A simple procedure for the study of inositol phosphatides in cat brain slices. Can J Biochem. 1965 Jun;43(6):671–683. doi: 10.1139/o65-078. [DOI] [PubMed] [Google Scholar]
  45. Pumphrey A. M. Incorporation of [32P]orthophosphate into brain-slice phospholipids and their precursors. Effects of electrical stimulation. Biochem J. 1969 Mar;112(1):61–70. doi: 10.1042/bj1120061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Rosenberg P. Effect of stimulation and acetylcholine on 32P and 14C incorporation into phospholipids of eel electroplax. J Pharm Sci. 1973 Sep;62(9):1552–1554. doi: 10.1002/jps.2600620941. [DOI] [PubMed] [Google Scholar]
  47. Roth C. D., Richardson K. C. Electron microscopical studies on axonal degeneration in the rat iris following ganglionectomy. Am J Anat. 1969 Mar;124(3):341–359. doi: 10.1002/aja.1001240305. [DOI] [PubMed] [Google Scholar]
  48. SOLS A., CRANE R. K. Substrate specificity of brain hexokinase. J Biol Chem. 1954 Oct;210(2):581–595. [PubMed] [Google Scholar]
  49. Salway J. G., Kai M., Hawthorne J. N. Triphosphoinositide phosphomonoesterase activity in nerve cellbodies, neuroglia and subcellular fractions from whole rat brain. J Neurochem. 1967 Oct;14(10):1013–1024. doi: 10.1111/j.1471-4159.1967.tb09512.x. [DOI] [PubMed] [Google Scholar]
  50. Schacht J., Agranoff B. W. Effects of acetylcholine on labeling of phosphatidate and phosphoinositides by ( 32 P) orthophosphate in nerve ending fractions of guinea pig cortex. J Biol Chem. 1972 Feb 10;247(3):771–777. [PubMed] [Google Scholar]
  51. Schacht J., Agranoff B. W. Phospholipid labelling by ( 32 P)-orthophosphate and ( 3 H)-myo-inositol in the stimulated goldfish brain in vivo. J Neurochem. 1972 May;19(5):1417–1421. doi: 10.1111/j.1471-4159.1972.tb01470.x. [DOI] [PubMed] [Google Scholar]
  52. Schacht J., Agranoff B. W. Stimulation of hydrolysis of phosphatidic acid by cholinergic agents in guinea pig synaptosomes. J Biol Chem. 1974 Mar 10;249(5):1551–1557. [PubMed] [Google Scholar]
  53. Sheltawy A., Brammer M., Borrill D. The subcellular distribution of triphosphoinositide phosphomonoesterase in guinea-pig brain. Biochem J. 1972 Jul;128(3):579–586. doi: 10.1042/bj1280579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Thompson W., Dawson R. M. The hydrolysis of triphosphoinositide by extracts of ox brain. Biochem J. 1964 May;91(2):233–236. doi: 10.1042/bj0910233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Thompson W., Dawson R. M. The triphosphoinositide phosphodiesterase of brain tissue. Biochem J. 1964 May;91(2):237–243. doi: 10.1042/bj0910237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Torda C. Acetylcholine-dependent molecular receptor. Activation of triphosphoinositide phosphomonoesterase. Neurobiology. 1973;3(1):19–28. [PubMed] [Google Scholar]
  57. Torda C. Model of molecular mechanism able to generate a depolarization-hyperpolarization cycle. Int Rev Neurobiol. 1974;16(0):1–66. doi: 10.1016/s0074-7742(08)60194-4. [DOI] [PubMed] [Google Scholar]
  58. White G. L., Larrabee M. G. Phosphoinositides and other phospholipids in sympathetic ganglia and nerve trunks of rats. Effects of neuronal activity and inositol analogs ( - and -hexachlorocyclohexane (lindane)) on ( 32 P)-labelling, synaptic transmission and axonal conduction. J Neurochem. 1973 Mar;20(3):783–798. doi: 10.1111/j.1471-4159.1973.tb00039.x. [DOI] [PubMed] [Google Scholar]
  59. White G. L., Schellhase H. U., Hawthorne J. N. Phosphoinositide metabolism in rat superior cervical ganglion, vagus and phrenic nerve: effects of electrical stimulation and various blocking agents. J Neurochem. 1974 Jan;22(1):149–158. doi: 10.1111/j.1471-4159.1974.tb12191.x. [DOI] [PubMed] [Google Scholar]
  60. Yagihara Y., Bleasdale J. E., Hawthorne J. N. Effects of acetylcholine on the incorporation of (32P)orthophosphate in vitro into the phospholipids of subsynaptosomal, membranes from guinea-pig brain. J Neurochem. 1973 Jul;21(1):173–190. doi: 10.1111/j.1471-4159.1973.tb04237.x. [DOI] [PubMed] [Google Scholar]
  61. Yagihara Y., Hawthrone J. N. Effects of acetylcholine on the incorporation of ( 32 P) orthophosphate in vitro into the phospholipids of nerve-ending particles from guinea pig brain. J Neurochem. 1972 Feb;19(2):355–367. doi: 10.1111/j.1471-4159.1972.tb01345.x. [DOI] [PubMed] [Google Scholar]