A comparison of the effects of phytohaemagglutinin and of calcium ionophore A23187 on the metabolism of glycerolipids in small lymphocytes (original) (raw)

Abstract

1. The effects of phytohaemagglutinin and of a Ca2+ ionophore (A23187) on glycerolipid metabolism in lymphocytes from pig lymph nodes were compared (a) by studying the incorporation of [32P]Pi and [3H]glycerol, and (b) by following the redistribution of [3H]glycerol among the lipids caused by these agents in pulse-chase experiments. 2. Phytohaemagglutinin only stimulated 32P incorporation into phosphatidylinositol and, to a slight extent, phosphatidate. Removal of most of the extracellular Ca2+ somewhat decreased this response. 3. Ionophore A23187 stimulated the labelling of phosphatidate and phosphatidylinositol with 32P to a much greater extent than did phytohaemagglutinin: the increase in phosphatidate labelling, but not that of phosphatidylinositol, was almost abolished by the removal of extracellular Ca2+. 4. The combined effects of phytohaemagglutinin and ionophore appeared to be additive, rather than synergistic. 5. Treatment with ionophore A23187 somewhat decreased the total incorporation of [3H]glycerol into glycerolipids, possibly because it lowered cell ATP content. In these experiments di- and tri-acylglycerol behaved anomalously, triacylglycerol labelling being suppressed completely, whereas that of diacylglycerol was enhanced. The pulse-chase results revealed that triacylglycerol was converted into diacylglycerol in the ionophore-treated cells, and the availability of this diacylglycerol probably led to the enhanced labelling of phosphatidate and phosphatidylinositol in the these cells. 6. Thus an increase in intracellular Ca2+ concentration appeared to have three effects on glycerolipid metabolism: (a) slight inhibition of some metabolic step preceding phosphatidate synthesis, (b) inhibition of diacylglycerol acyltransferase and (c) activation of a triacylglycerol lipase. 7. In contrast, it seems likely that the only effect of phytohaemagglutinin is to stimulate phosphatidylinositol breakdown. 8. Pig polymorphonuclear leucocytes treated with ionophore A23187 showed metabolic changes that were similar to those demonstrated with lymphocytes. 9. A possible similarity is suggested between Ca2+-stimulated triacylglycerol lipase in lymphocytes and polymorphonuclear leucocytes and previous observations of enhanced triacylglycerol metabolism in stimulated cells whose metabolic functions involve membrane fusion.

389

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan D., Auger J., Crumpton M. J. Interaction of phytohemagglutinin with plasma membranes of pig lymphocytes and thymus cells. Exp Cell Res. 1971 Jun;66(2):362–368. doi: 10.1016/0014-4827(71)90689-6. [DOI] [PubMed] [Google Scholar]
  2. Allan D., Billah M. M., Finean J. B., Michell R. H. Release of diacylglycerol-enriched vesicles from erythrocytes with increased intracellular (Ca2+). Nature. 1976 May 6;261(5555):58–60. doi: 10.1038/261058a0. [DOI] [PubMed] [Google Scholar]
  3. Allan D., Billah M. M., Finean J. B., Michell R. H. Release of diacylglycerol-enriched vesicles from erythrocytes with increased intracellular (Ca2+). Nature. 1976 May 6;261(5555):58–60. doi: 10.1038/261058a0. [DOI] [PubMed] [Google Scholar]
  4. Allan D., Low M. G., Finean J. B., Michell R. H. Changes in lipid metabolism and cell morphology following attack by phospholipase C (Clostridium perfringens) on red cells or lymphocytes. Biochim Biophys Acta. 1975 Dec 1;413(2):309–316. doi: 10.1016/0005-2736(75)90116-9. [DOI] [PubMed] [Google Scholar]
  5. Allan D., Michell R. H. Enhanced synthesis de novo of phosphatidylinositol in lymphocytes treated with cationic amphiphilic drugs. Biochem J. 1975 Jun;148(3):471–478. doi: 10.1042/bj1480471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Allan D., Michell R. H. Metabolism of phosphatidate at the plasma membrane. Biochem Soc Trans. 1977;5(1):55–59. doi: 10.1042/bst0050055. [DOI] [PubMed] [Google Scholar]
  7. Allan D., Michell R. H. Phosphatidylinositol cleavage catalysed by the soluble fraction from lymphocytes. Activity at pH5.5 and pH7.0. Biochem J. 1974 Sep;142(3):591–597. doi: 10.1042/bj1420591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Allan D., Michell R. H. Phosphatidylinositol cleavage in lymphocytes. Requirement for calcium ions at a low concentration and effects of other cations. Biochem J. 1974 Sep;142(3):599–604. doi: 10.1042/bj1420599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Allan D., Watts R., Michell R. H. Production of 1,2-diacylglycerol and phosphatidate in human erythrocytes treated with calcium ions and ionophore A23187. Biochem J. 1976 May 15;156(2):225–232. doi: 10.1042/bj1560225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Allwood G., Asherson G. L., Davey M. J., Goodford P. J. The early uptake of radioactive calcium by human lymphocytes treated with phytohaemagglutinin. Immunology. 1971 Sep;21(3):509–516. [PMC free article] [PubMed] [Google Scholar]
  11. Banschbach M. W., Geison R. L., Hokin-Neaverson M. Acetylcholine increases the level of diglyceride in mouse pancreas. Biochem Biophys Res Commun. 1974 Jun 4;58(3):714–718. doi: 10.1016/s0006-291x(74)80476-6. [DOI] [PubMed] [Google Scholar]
  12. Betel I., Martijnse J., Van den Berg K. J. Absence of an early increase of phospholipid-phosphate turnover in mitogen-stimulated B lymphocytes. Cell Immunol. 1974 Dec;14(3):429–434. doi: 10.1016/0008-8749(74)90193-2. [DOI] [PubMed] [Google Scholar]
  13. Blomstrand R. Fatty acid synthesis in human lymphocytes. Acta Chem Scand. 1966;20(4):1122–1128. doi: 10.3891/acta.chem.scand.20-1122. [DOI] [PubMed] [Google Scholar]
  14. Crumpton M. J., Allan D., Auger J., Green N. M., Maino V. C. Recognition at cell surfaces: phytohaemagglutinin-lymphocyte interaction. Philos Trans R Soc Lond B Biol Sci. 1975 Nov 6;272(915):173–180. doi: 10.1098/rstb.1975.0079. [DOI] [PubMed] [Google Scholar]
  15. Elsbach P., Farrow S. Cellular triglyceride as a source of fatty acid for lecithin synthesis during phagocytosis. Biochim Biophys Acta. 1969 Mar 4;176(2):438–441. doi: 10.1016/0005-2760(69)90208-2. [DOI] [PubMed] [Google Scholar]
  16. Fisher D. B., Mueller G. C. An early alteration in the phospholipid metabolism of lymphocytes by phytohemagglutinin. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1396–1402. doi: 10.1073/pnas.60.4.1396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Freedman M. H., Raff M. C. Induction of increased calcium uptake in mouse T lymphocytes by concanavalin A and its modulation by cyclic nucleotides. Nature. 1975 May 29;255(5507):378–382. doi: 10.1038/255378a0. [DOI] [PubMed] [Google Scholar]
  18. Freeman C. P., West D. Complete separation of lipid classes on a single thin-layer plate. J Lipid Res. 1966 Mar;7(2):324–327. [PubMed] [Google Scholar]
  19. Jafferji S. S., Michell R. H. Effects of calcium-antagonistic drugs on the stimulation by carbamoylcholine and histamine of phosphatidylinositol turnover in longitudinal smooth muscle of guinea-pig ileum. Biochem J. 1976 Nov 15;160(2):163–169. doi: 10.1042/bj1600163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jones L. M., Michell R. H. Cholinergically stimulated phosphatidylinositol breakdown in parotid-gland fragments is independent of the ionic environment. Biochem J. 1976 Aug 15;158(2):505–507. doi: 10.1042/bj1580505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jones L. M., Michell R. H. The relationship of calcium to receptor-controlled stimulation of phosphatidylinositol turnover. Effects of acetylcholine, adrenaline, calcium ions, cinchocaine and a bivalent cation ionophore on rat parotid-gland fragments. Biochem J. 1975 Jun;148(3):479–485. doi: 10.1042/bj1480479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lindahl-Kiessling K. Mechanism of phytohemagglutinin (PHA) action. V. PHA compared with concanavalin A (Con A). Exp Cell Res. 1972 Jan;70(1):17–26. doi: 10.1016/0014-4827(72)90176-0. [DOI] [PubMed] [Google Scholar]
  23. Maino V. C., Green N. M., Crumpton M. J. The role of calcium ions in initiating transformation of lymphocytes. Nature. 1974 Sep 27;251(5473):324–327. doi: 10.1038/251324b0. [DOI] [PubMed] [Google Scholar]
  24. Maino V. C., Hayman M. J., Crumpton M. J. Relationship between enhanced turnover of phosphatidylinositol and lymphocyte activation by mitogens. Biochem J. 1975 Jan;146(1):247–252. doi: 10.1042/bj1460247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Masuzawa Y., Osawa T., Inoue K., Nojima S. Effects of various mitogens on the phospholipid metabolism of human peripheral lymphocytes. Biochim Biophys Acta. 1973 Dec 20;326(3):339–344. [PubMed] [Google Scholar]
  26. Michell R. H. Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta. 1975 Mar 25;415(1):81–47. doi: 10.1016/0304-4157(75)90017-9. [DOI] [PubMed] [Google Scholar]
  27. Michell R. H., Jafferji S. S., Jones L. M. Receptor occupancy dose--response curve suggests that phosphatidyl-inositol breakdown may be intrinsic to the mechanism of the muscarinic cholinergic receptor. FEBS Lett. 1976 Oct 15;69(1):1–5. doi: 10.1016/0014-5793(76)80640-0. [DOI] [PubMed] [Google Scholar]
  28. Michell R. H., Jones L. M., Jafferji S. S. A possible role for phosphatidylinositol breakdown in muscarinic cholinergic stimulus-response coupling. Biochem Soc Trans. 1977;5(1):77–81. doi: 10.1042/bst0050077. [DOI] [PubMed] [Google Scholar]
  29. Oron Y., Löwe M., Selinger Z. Incorporation of inorganic [32P] phosphate into rat parotid phosphatidylinositol. Induction through activation of alpha adrenergic and cholinergic receptors and relation to K+ release. Mol Pharmacol. 1975 Jan;11(1):79–86. [PubMed] [Google Scholar]
  30. Scott T. W., Mills S. C., Freinkel N. The mechanism of thyrotrophin action in relation to lipid metabolism in thyroid tissue. Biochem J. 1968 Sep;109(3):325–332. doi: 10.1042/bj1090325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shohet S. B. Changes in fatty acid metabolism in human leukemic granulocytes during phagocytosis. J Lab Clin Med. 1970 Apr;75(4):659–672. [PubMed] [Google Scholar]
  32. Skipski V. P., Peterson R. F., Barclay M. Quantitative analysis of phospholipids by thin-layer chromatography. Biochem J. 1964 Feb;90(2):374–378. doi: 10.1042/bj0900374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Trifaró J. M. The effect of Ca++ omission on the secretion of catecholamines and the incorporation of orthophosphate-32P into nucleotides and phospholipids of bovine adrenal medulla during acetylcholine stimulation. Mol Pharmacol. 1969 Jul;5(4):424–427. [PubMed] [Google Scholar]
  34. Whitney R. B., Sutherland R. M. Enhanced uptake of calcium by transforming lymphocytes. Cell Immunol. 1972 Sep;5(1):137–147. doi: 10.1016/0008-8749(72)90091-3. [DOI] [PubMed] [Google Scholar]