An ultrastructural study of the phagocytic activity of astrocytes in adult rat brain (original) (raw)

. 1996 Apr;188(Pt 2):257–262.

Abstract

The role of adult astrocytes in the removal of cell debris and foreign particles following injury to the brain is controversial. This study was undertaken to elucidate the response of adult astrocytes to needle injury of the rat cerebral cortex, using a suspension of colloidal carbon as a marker for phagocytosis. Either a single or 2 successive injections of colloidal carbon suspension were made into the cerebral cortex. The animals were allowed to survive for periods of from 1 to 30 d. Unequivocal involvement of astrocytes in the removal of carbon particles was evident only in those brains which had been subjected to 2 successive injections of carbon. The particles were located in membrane-bound vacuoles and were subsequently sequestered in lysosomes. Carbon-containing astrocytes were observed in the immediate vicinity of the lesion, in the adjacent parenchyma, around blood vessels and abutting carbon-containing macrophages. This study demonstrates that adult astrocytes are involved in phagocytosis, but only as a second line of defence. The possible significance of carbon-laden astrocytes further away from the site of the lesion is discussed.

257

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Ali S. Y., Al-Zuhair A. G., Dawod B. Ultrastructural study of phagocytic activities of young astrocytes in injured neonatal rat brain following intracerebral injection of colloidal carbon. Glia. 1988;1(3):211–218. doi: 10.1002/glia.440010306. [DOI] [PubMed] [Google Scholar]
  2. Al-Ali S. Y., Robinson N. Brain phagocytes: source of high acid phosphatase activity. Am J Pathol. 1982 Apr;107(1):51–58. [PMC free article] [PubMed] [Google Scholar]
  3. Al-Ali S. Y., Robinson N. Neuronal and oligodendrocytic response to cortical injury: ultrastructural and cytochemical changes. Histochem J. 1984 Feb;16(2):165–178. doi: 10.1007/BF01003547. [DOI] [PubMed] [Google Scholar]
  4. Al-Ali S. Y., Robinson N. Ultrastructural study of enzymes in reactive astrocytes: clarification of astrocytic activity. Histochem J. 1982 Mar;14(2):311–321. doi: 10.1007/BF01041223. [DOI] [PubMed] [Google Scholar]
  5. Arai N. The role of swollen astrocytes in human brain lesions after edema--an immunohistochemical study using formalin-fixed paraffin-embedded sections. Neurosci Lett. 1992 Apr 13;138(1):56–58. doi: 10.1016/0304-3940(92)90471-i. [DOI] [PubMed] [Google Scholar]
  6. Barrett C. P., Donati E. J., Guth L. Differences between adult and neonatal rats in their astroglial response to spinal injury. Exp Neurol. 1984 May;84(2):374–385. doi: 10.1016/0014-4886(84)90234-6. [DOI] [PubMed] [Google Scholar]
  7. Bernstein D. R., Bechard D. E., Stelzner D. J. Neuritic growth maintained near the lesion site long after spinal cord transection in the newborn rat. Neurosci Lett. 1981 Oct;26(1):55–60. doi: 10.1016/0304-3940(81)90425-0. [DOI] [PubMed] [Google Scholar]
  8. Ghatak N. R. Occurrence of oligodendrocytes within astrocytes in demyelinating lesions. J Neuropathol Exp Neurol. 1992 Jan;51(1):40–46. doi: 10.1097/00005072-199201000-00006. [DOI] [PubMed] [Google Scholar]
  9. Hatten M. E., Liem R. K., Shelanski M. L., Mason C. A. Astroglia in CNS injury. Glia. 1991;4(2):233–243. doi: 10.1002/glia.440040215. [DOI] [PubMed] [Google Scholar]
  10. Hughes J. T., Oppenheimer D. R. Superficial siderosis of the central nervous system. A report on nine cases with autopsy. Acta Neuropathol. 1969;13(1):56–74. doi: 10.1007/BF00686141. [DOI] [PubMed] [Google Scholar]
  11. Iacono R. F., Berría M. I., Lascano E. F. A triple staining procedure to evaluate phagocytic role of differentiated astrocytes. J Neurosci Methods. 1991 Oct;39(3):225–230. doi: 10.1016/0165-0270(91)90101-5. [DOI] [PubMed] [Google Scholar]
  12. Kamitani H., Masuzawa H., Sato J., Okada M. Ultrastructure of concentric laminations in primary human brain tumors. Acta Neuropathol. 1986;71(1-2):83–87. doi: 10.1007/BF00687966. [DOI] [PubMed] [Google Scholar]
  13. Kondo A., Ohnishi A., Nagara H., Tateishi J. Neurotoxicity in primary sensory neurons of adriamycin administered through retrograde axoplasmic transport in rats. Neuropathol Appl Neurobiol. 1987 May-Jun;13(3):177–192. doi: 10.1111/j.1365-2990.1987.tb00182.x. [DOI] [PubMed] [Google Scholar]
  14. Ling E. A., Leong S. K. Effects of intraneural injection of Ricinus communis agglutinin-60 into rat vagus nerve. J Neurocytol. 1987 Jun;16(3):373–387. doi: 10.1007/BF01611348. [DOI] [PubMed] [Google Scholar]
  15. Ling E. A., Penney D., Leblond C. P. Use of carbon labeling to demonstrate the role of blood monocytes as precursors of the 'ameboid cells' present in the corpus callosum of postnatal rats. J Comp Neurol. 1980 Oct 1;193(3):631–657. doi: 10.1002/cne.901930304. [DOI] [PubMed] [Google Scholar]
  16. McKeever P. E., Balentine J. D. Macrophages migration through the brain parenchyma to the perivascular space following particle ingestion. Am J Pathol. 1978 Oct;93(1):153–164. [PMC free article] [PubMed] [Google Scholar]
  17. Moore G. R., Raine C. S. Leptomeningeal and adventitial gliosis as a consequence of chronic inflammation. Neuropathol Appl Neurobiol. 1986 Jul-Aug;12(4):371–378. doi: 10.1111/j.1365-2990.1986.tb00148.x. [DOI] [PubMed] [Google Scholar]
  18. Moore I. E., Buontempo J. M., Weller R. O. Response of fetal and neonatal rat brain to injury. Neuropathol Appl Neurobiol. 1987 May-Jun;13(3):219–228. doi: 10.1111/j.1365-2990.1987.tb00185.x. [DOI] [PubMed] [Google Scholar]
  19. Penfold P. L., Provis J. M., Madigan M. C., van Driel D., Billson F. A. Angiogenesis in normal human retinal development: the involvement of astrocytes and macrophages. Graefes Arch Clin Exp Ophthalmol. 1990;228(3):255–263. doi: 10.1007/BF00920031. [DOI] [PubMed] [Google Scholar]
  20. Prineas J. W., Kwon E. E., Goldenberg P. Z., Cho E. S., Sharer L. R. Interaction of astrocytes and newly formed oligodendrocytes in resolving multiple sclerosis lesions. Lab Invest. 1990 Nov;63(5):624–636. [PubMed] [Google Scholar]
  21. Schelper R. L., Adrian E. K., Jr Monocytes become macrophages; they do not become microglia: a light and electron microscopic autoradiographic study using 125-iododeoxyuridine. J Neuropathol Exp Neurol. 1986 Jan;45(1):1–19. doi: 10.1097/00005072-198601000-00001. [DOI] [PubMed] [Google Scholar]
  22. Shimada M., Akagi N., Goto H., Watanabe H., Nakanishi M., Hirose Y., Watanabe M. Microvessel and astroglial cell densities in the mouse hippocampus. J Anat. 1992 Feb;180(Pt 1):89–95. [PMC free article] [PubMed] [Google Scholar]
  23. Shuangshoti S., Kasantikul V., Tongsuk W. Phagocytosis by neoplastic astrocytes. J Med Assoc Thai. 1989 Aug;72(8):458–464. [PubMed] [Google Scholar]
  24. Smith G. M., Miller R. H. Immature type-1 astrocytes suppress glial scar formation, are motile and interact with blood vessels. Brain Res. 1991 Mar 8;543(1):111–122. doi: 10.1016/0006-8993(91)91054-5. [DOI] [PubMed] [Google Scholar]
  25. Stagaard M., Balslev Y., Lundberg J. J., Møllgård K. Microglia in the hypendyma of the rat subcommissural organ following brain lesion with serotonin neurotoxin. J Neurocytol. 1987 Feb;16(1):131–142. doi: 10.1007/BF02456704. [DOI] [PubMed] [Google Scholar]
  26. Stenwig A. E. The origin of brain macrophages in traumatic lesions, Wallerian degeneration, and retrograde degeneration. J Neuropathol Exp Neurol. 1972 Oct;31(4):696–704. doi: 10.1097/00005072-197210000-00011. [DOI] [PubMed] [Google Scholar]
  27. Vinores S. A., Herman M. M. Phagocytosis of myelin by astrocytes in explants of adult rabbit cerebral white matter maintained on Gelfoam matrix. J Neuroimmunol. 1993 Mar;43(1-2):169–176. doi: 10.1016/0165-5728(93)90088-g. [DOI] [PubMed] [Google Scholar]
  28. Watabe K., Osborne D., Kim S. U. Phagocytic activity of human adult astrocytes and oligodendrocytes in culture. J Neuropathol Exp Neurol. 1989 Sep;48(5):499–506. doi: 10.1097/00005072-198909000-00001. [DOI] [PubMed] [Google Scholar]
  29. al-Ali S. Y., al-Zuhair A. G. Fine structural study of the spinal cord and spinal ganglia in mice afflicted with a hereditary sensory neuropathy, dystonia musculorum. J Submicrosc Cytol Pathol. 1989 Oct;21(4):737–748. [PubMed] [Google Scholar]
  30. del Cerro M., Monjan A. A. Unequivocal demonstration of the hematogenous origin of brain macrophages in a stab wound by a double-label technique. Neuroscience. 1979;4(9):1399–1404. doi: 10.1016/0306-4522(79)90167-2. [DOI] [PubMed] [Google Scholar]