A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development (original) (raw)

Abstract

Transcription factor GATA-1 is essential for red blood cell maturation and, therefore, for survival of developing mouse embryos. GATA-1 is also expressed in megakaryocytes, mast cells, eosinophils, multipotential hematopoietic progenitors and Sertoli cells of the testis, where its functions have been elusive. Indeed, interpretation of gene function in conventional knockout mice is often limited by embryonic lethality or absence of mature cells of interest, creating the need for alternate methods to assess gene function in selected cell lineages. Emerging strategies for conditional gene inactivation through site-specific recombinases rely on the availability of mouse strains with high fidelity of transgene expression and efficient, tissue-restricted DNA excision. In an alternate approach, we modified sequences upstream of the GATA-1 locus in embryonic stem cells, including a DNase I-hypersensitive region. This resulted in generation of mice with selective loss of megakaryocyte GATA-1 expression, yet sufficient erythroid cell levels to avoid lethal anemia. The mutant mice have markedly reduced platelet numbers, associated with deregulated megakaryocyte proliferation and severely impaired cytoplasmic maturation. These findings reveal a critical role for GATA-1 in megakaryocyte growth regulation and platelet biogenesis, and illustrate how targeted mutation of cis-elements can generate lineage-specific knockout mice.

Full Text

The Full Text of this article is available as a PDF (847.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Briegel K., Lim K. C., Plank C., Beug H., Engel J. D., Zenke M. Ectopic expression of a conditional GATA-2/estrogen receptor chimera arrests erythroid differentiation in a hormone-dependent manner. Genes Dev. 1993 Jun;7(6):1097–1109. doi: 10.1101/gad.7.6.1097. [DOI] [PubMed] [Google Scholar]
  2. Cairns L. A., Crotta S., Minuzzo M., Moroni E., Granucci F., Nicolis S., Schiró R., Pozzi L., Giglioni B., Ricciardi-Castagnoli P. Immortalization of multipotent growth-factor dependent hemopoietic progenitors from mice transgenic for GATA-1 driven SV40 tsA58 gene. EMBO J. 1994 Oct 3;13(19):4577–4586. doi: 10.1002/j.1460-2075.1994.tb06779.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Capecchi M. R. Altering the genome by homologous recombination. Science. 1989 Jun 16;244(4910):1288–1292. doi: 10.1126/science.2660260. [DOI] [PubMed] [Google Scholar]
  4. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  5. Feil R., Brocard J., Mascrez B., LeMeur M., Metzger D., Chambon P. Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10887–10890. doi: 10.1073/pnas.93.20.10887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ferradini L., Gu H., De Smet A., Rajewsky K., Reynaud C. A., Weill J. C. Rearrangement-enhancing element upstream of the mouse immunoglobulin kappa chain J cluster. Science. 1996 Mar 8;271(5254):1416–1420. doi: 10.1126/science.271.5254.1416. [DOI] [PubMed] [Google Scholar]
  7. Fiering S., Epner E., Robinson K., Zhuang Y., Telling A., Hu M., Martin D. I., Enver T., Ley T. J., Groudine M. Targeted deletion of 5'HS2 of the murine beta-globin LCR reveals that it is not essential for proper regulation of the beta-globin locus. Genes Dev. 1995 Sep 15;9(18):2203–2213. doi: 10.1101/gad.9.18.2203. [DOI] [PubMed] [Google Scholar]
  8. Fujiwara Y., Browne C. P., Cunniff K., Goff S. C., Orkin S. H. Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12355–12358. doi: 10.1073/pnas.93.22.12355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grewal T., Theisen M., Borgmeyer U., Grussenmeyer T., Rupp R. A., Stief A., Qian F., Hecht A., Sippel A. E. The -6.1-kilobase chicken lysozyme enhancer is a multifactorial complex containing several cell-type-specific elements. Mol Cell Biol. 1992 May;12(5):2339–2350. doi: 10.1128/mcb.12.5.2339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grupe A., Hultgren B., Ryan A., Ma Y. H., Bauer M., Stewart T. A. Transgenic knockouts reveal a critical requirement for pancreatic beta cell glucokinase in maintaining glucose homeostasis. Cell. 1995 Oct 6;83(1):69–78. doi: 10.1016/0092-8674(95)90235-x. [DOI] [PubMed] [Google Scholar]
  11. Gu H., Marth J. D., Orban P. C., Mossmann H., Rajewsky K. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science. 1994 Jul 1;265(5168):103–106. doi: 10.1126/science.8016642. [DOI] [PubMed] [Google Scholar]
  12. Hug B. A., Wesselschmidt R. L., Fiering S., Bender M. A., Epner E., Groudine M., Ley T. J. Analysis of mice containing a targeted deletion of beta-globin locus control region 5' hypersensitive site 3. Mol Cell Biol. 1996 Jun;16(6):2906–2912. doi: 10.1128/mcb.16.6.2906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ito E., Toki T., Ishihara H., Ohtani H., Gu L., Yokoyama M., Engel J. D., Yamamoto M. Erythroid transcription factor GATA-1 is abundantly transcribed in mouse testis. Nature. 1993 Apr 1;362(6419):466–468. doi: 10.1038/362466a0. [DOI] [PubMed] [Google Scholar]
  14. Jackson H., Williams N., Bertoncello I., Green R. Classes of primitive murine megakaryocytic progenitor cells. Exp Hematol. 1994 Sep;22(10):954–958. [PubMed] [Google Scholar]
  15. Kulessa H., Frampton J., Graf T. GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts. Genes Dev. 1995 May 15;9(10):1250–1262. doi: 10.1101/gad.9.10.1250. [DOI] [PubMed] [Google Scholar]
  16. Kühn R., Schwenk F., Aguet M., Rajewsky K. Inducible gene targeting in mice. Science. 1995 Sep 8;269(5229):1427–1429. doi: 10.1126/science.7660125. [DOI] [PubMed] [Google Scholar]
  17. Lemarchandel V., Ghysdael J., Mignotte V., Rahuel C., Roméo P. H. GATA and Ets cis-acting sequences mediate megakaryocyte-specific expression. Mol Cell Biol. 1993 Jan;13(1):668–676. doi: 10.1128/mcb.13.1.668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Leroy-Viard K., Vinit M. A., Lecointe N., Mathieu-Mahul D., Roméo P. H. Distinct DNase-I hypersensitive sites are associated with TAL-1 transcription in erythroid and T-cell lines. Blood. 1994 Dec 1;84(11):3819–3827. [PubMed] [Google Scholar]
  19. Li E., Bestor T. H., Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992 Jun 12;69(6):915–926. doi: 10.1016/0092-8674(92)90611-f. [DOI] [PubMed] [Google Scholar]
  20. Long M. W., Gragowski L. L., Heffner C. H., Boxer L. A. Phorbol diesters stimulate the development of an early murine progenitor cell. The burst-forming unit-megakaryocyte. J Clin Invest. 1985 Aug;76(2):431–438. doi: 10.1172/JCI111990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. May G., Enver T. Targeting gene expression to haemopoietic stem cells: a chromatin-dependent upstream element mediates cell type-specific expression of the stem cell antigen CD34. EMBO J. 1995 Feb 1;14(3):564–574. doi: 10.1002/j.1460-2075.1995.tb07032.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McDonald T. P., Jackson C. W. Thrombopoietin derived from human embryonic kidney cells stimulates an increase in DNA content of murine megakaryocytes in vivo. Exp Hematol. 1990 Aug;18(7):758–763. [PubMed] [Google Scholar]
  23. Metzger D., Clifford J., Chiba H., Chambon P. Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6991–6995. doi: 10.1073/pnas.92.15.6991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. O'Gorman S., Fox D. T., Wahl G. M. Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science. 1991 Mar 15;251(4999):1351–1355. doi: 10.1126/science.1900642. [DOI] [PubMed] [Google Scholar]
  25. Olson E. N., Arnold H. H., Rigby P. W., Wold B. J. Know your neighbors: three phenotypes in null mutants of the myogenic bHLH gene MRF4. Cell. 1996 Apr 5;85(1):1–4. doi: 10.1016/s0092-8674(00)81073-9. [DOI] [PubMed] [Google Scholar]
  26. Pevny L., Lin C. S., D'Agati V., Simon M. C., Orkin S. H., Costantini F. Development of hematopoietic cells lacking transcription factor GATA-1. Development. 1995 Jan;121(1):163–172. doi: 10.1242/dev.121.1.163. [DOI] [PubMed] [Google Scholar]
  27. Pevny L., Simon M. C., Robertson E., Klein W. H., Tsai S. F., D'Agati V., Orkin S. H., Costantini F. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature. 1991 Jan 17;349(6306):257–260. doi: 10.1038/349257a0. [DOI] [PubMed] [Google Scholar]
  28. Sauer B., Henderson N. Targeted insertion of exogenous DNA into the eukaryotic genome by the Cre recombinase. New Biol. 1990 May;2(5):441–449. [PubMed] [Google Scholar]
  29. Semenza G. L., Koury S. T., Nejfelt M. K., Gearhart J. D., Antonarakis S. E. Cell-type-specific and hypoxia-inducible expression of the human erythropoietin gene in transgenic mice. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8725–8729. doi: 10.1073/pnas.88.19.8725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shivdasani R. A., Mayer E. L., Orkin S. H. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature. 1995 Feb 2;373(6513):432–434. doi: 10.1038/373432a0. [DOI] [PubMed] [Google Scholar]
  31. Tsien J. Z., Chen D. F., Gerber D., Tom C., Mercer E. H., Anderson D. J., Mayford M., Kandel E. R., Tonegawa S. Subregion- and cell type-restricted gene knockout in mouse brain. Cell. 1996 Dec 27;87(7):1317–1326. doi: 10.1016/s0092-8674(00)81826-7. [DOI] [PubMed] [Google Scholar]
  32. Vidal M., Morris R., Grosveld F., Spanopoulou E. Tissue-specific control elements of the Thy-1 gene. EMBO J. 1990 Mar;9(3):833–840. doi: 10.1002/j.1460-2075.1990.tb08180.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yomogida K., Ohtani H., Harigae H., Ito E., Nishimune Y., Engel J. D., Yamamoto M. Developmental stage- and spermatogenic cycle-specific expression of transcription factor GATA-1 in mouse Sertoli cells. Development. 1994 Jul;120(7):1759–1766. doi: 10.1242/dev.120.7.1759. [DOI] [PubMed] [Google Scholar]