Domain structure and intramolecular regulation of dynamin GTPase (original) (raw)

Abstract

Dynamin is a 100 kDa GTPase required for receptor-mediated endocytosis, functioning as the key regulator of the late stages of clathrin-coated vesicle budding. It is specifically targeted to clathrin-coated pits where it self-assembles into 'collars' required for detachment of coated vesicles from the plasma membrane. Self-assembly stimulates dynamin GTPase activity. Thus, dynamin-dynamin interactions are critical in regulating its cellular function. We show by crosslinking and analytical ultracentrifugation that dynamin is a tetramer. Using limited proteolysis, we have defined structural domains of dynamin and evaluated the domain interactions and requirements for self-assembly and GTP binding and hydrolysis. We show that dynamin's C-terminal proline- and arginine-rich domain (PRD) and dynamin's pleckstrin homology (PH) domain are, respectively, positive and negative regulators of self-assembly and GTP hydrolysis. Importantly, we have discovered that the alpha-helical domain interposed between the PH domain and the PRD interacts with the N-terminal GTPase domain to stimulate GTP hydrolysis. We term this region the GTPase effector domain (GED) of dynamin.

Full Text

The Full Text of this article is available as a PDF (477.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger B., Wilson D. B., Wolf E., Tonchev T., Milla M., Kim P. S. Predicting coiled coils by use of pairwise residue correlations. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8259–8263. doi: 10.1073/pnas.92.18.8259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bourne H. R., Sanders D. A., McCormick F. The GTPase superfamily: conserved structure and molecular mechanism. Nature. 1991 Jan 10;349(6305):117–127. doi: 10.1038/349117a0. [DOI] [PubMed] [Google Scholar]
  3. Damke H., Baba T., Warnock D. E., Schmid S. L. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J Cell Biol. 1994 Nov;127(4):915–934. doi: 10.1083/jcb.127.4.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Henley J. R., McNiven M. A. Association of a dynamin-like protein with the Golgi apparatus in mammalian cells. J Cell Biol. 1996 May;133(4):761–775. doi: 10.1083/jcb.133.4.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Herskovits J. S., Shpetner H. S., Burgess C. C., Vallee R. B. Microtubules and Src homology 3 domains stimulate the dynamin GTPase via its C-terminal domain. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11468–11472. doi: 10.1073/pnas.90.24.11468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hinshaw J. E., Schmid S. L. Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature. 1995 Mar 9;374(6518):190–192. doi: 10.1038/374190a0. [DOI] [PubMed] [Google Scholar]
  7. Kim Y. T., Wu C. F. Allelic interactions at the shibire locus of Drosophila: effects on behavior. J Neurogenet. 1990 Nov;7(1):1–14. doi: 10.3109/01677069009084149. [DOI] [PubMed] [Google Scholar]
  8. Lin H. C., Gilman A. G. Regulation of dynamin I GTPase activity by G protein betagamma subunits and phosphatidylinositol 4,5-bisphosphate. J Biol Chem. 1996 Nov 8;271(45):27979–27982. doi: 10.1074/jbc.271.45.27979. [DOI] [PubMed] [Google Scholar]
  9. Maeda K., Nakata T., Noda Y., Sato-Yoshitake R., Hirokawa N. Interaction of dynamin with microtubules: its structure and GTPase activity investigated by using highly purified dynamin. Mol Biol Cell. 1992 Oct;3(10):1181–1194. doi: 10.1091/mbc.3.10.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Markby D. W., Onrust R., Bourne H. R. Separate GTP binding and GTPase activating domains of a G alpha subunit. Science. 1993 Dec 17;262(5141):1895–1901. doi: 10.1126/science.8266082. [DOI] [PubMed] [Google Scholar]
  11. Melén K., Ronni T., Broni B., Krug R. M., von Bonsdorff C. H., Julkunen I. Interferon-induced Mx proteins form oligomers and contain a putative leucine zipper. J Biol Chem. 1992 Dec 25;267(36):25898–25907. [PubMed] [Google Scholar]
  12. Nakayama M., Yazaki K., Kusano A., Nagata K., Hanai N., Ishihama A. Structure of mouse Mx1 protein. Molecular assembly and GTP-dependent conformational change. J Biol Chem. 1993 Jul 15;268(20):15033–15038. [PubMed] [Google Scholar]
  13. Nock S., Grillenbeck N., Ahmadian M. R., Ribeiro S., Kreutzer R., Sprinzl M. Properties of isolated domains of the elongation factor Tu from Thermus thermophilus HB8. Eur J Biochem. 1995 Nov 15;234(1):132–139. doi: 10.1111/j.1432-1033.1995.00132.x. [DOI] [PubMed] [Google Scholar]
  14. Richter M. F., Schwemmle M., Herrmann C., Wittinghofer A., Staeheli P. Interferon-induced MxA protein. GTP binding and GTP hydrolysis properties. J Biol Chem. 1995 Jun 2;270(22):13512–13517. [PubMed] [Google Scholar]
  15. Salim K., Bottomley M. J., Querfurth E., Zvelebil M. J., Gout I., Scaife R., Margolis R. L., Gigg R., Smith C. I., Driscoll P. C. Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton's tyrosine kinase. EMBO J. 1996 Nov 15;15(22):6241–6250. [PMC free article] [PubMed] [Google Scholar]
  16. Schwemmle M., Richter M. F., Herrmann C., Nassar N., Staeheli P. Unexpected structural requirements for GTPase activity of the interferon-induced MxA protein. J Biol Chem. 1995 Jun 2;270(22):13518–13523. [PubMed] [Google Scholar]
  17. Shaw G. The pleckstrin homology domain: an intriguing multifunctional protein module. Bioessays. 1996 Jan;18(1):35–46. doi: 10.1002/bies.950180109. [DOI] [PubMed] [Google Scholar]
  18. Shpetner H. S., Vallee R. B. Dynamin is a GTPase stimulated to high levels of activity by microtubules. Nature. 1992 Feb 20;355(6362):733–735. doi: 10.1038/355733a0. [DOI] [PubMed] [Google Scholar]
  19. Tuma P. L., Collins C. A. Dynamin forms polymeric complexes in the presence of lipid vesicles. Characterization of chemically cross-linked dynamin molecules. J Biol Chem. 1995 Nov 3;270(44):26707–26714. doi: 10.1074/jbc.270.44.26707. [DOI] [PubMed] [Google Scholar]
  20. Tuma P. L., Stachniak M. C., Collins C. A. Activation of dynamin GTPase by acidic phospholipids and endogenous rat brain vesicles. J Biol Chem. 1993 Aug 15;268(23):17240–17246. [PubMed] [Google Scholar]
  21. Urrutia R., Henley J. R., Cook T., McNiven M. A. The dynamins: redundant or distinct functions for an expanding family of related GTPases? Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):377–384. doi: 10.1073/pnas.94.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Warnock D. E., Hinshaw J. E., Schmid S. L. Dynamin self-assembly stimulates its GTPase activity. J Biol Chem. 1996 Sep 13;271(37):22310–22314. doi: 10.1074/jbc.271.37.22310. [DOI] [PubMed] [Google Scholar]
  23. Warnock D. E., Schmid S. L. Dynamin GTPase, a force-generating molecular switch. Bioessays. 1996 Nov;18(11):885–893. doi: 10.1002/bies.950181107. [DOI] [PubMed] [Google Scholar]
  24. Warnock D. E., Terlecky L. J., Schmid S. L. Dynamin GTPase is stimulated by crosslinking through the C-terminal proline-rich domain. EMBO J. 1995 Apr 3;14(7):1322–1328. doi: 10.1002/j.1460-2075.1995.tb07118.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yue V. T., Schimmel P. R. Direct and specific photochemical cross-linking of adenosine 5'-triphosphate to an aminoacyl-tRNA synthetase. Biochemistry. 1977 Oct 18;16(21):4678–4684. doi: 10.1021/bi00640a023. [DOI] [PubMed] [Google Scholar]
  26. Zheng J., Cahill S. M., Lemmon M. A., Fushman D., Schlessinger J., Cowburn D. Identification of the binding site for acidic phospholipids on the pH domain of dynamin: implications for stimulation of GTPase activity. J Mol Biol. 1996 Jan 12;255(1):14–21. doi: 10.1006/jmbi.1996.0002. [DOI] [PubMed] [Google Scholar]
  27. van der Bliek A. M., Redelmeier T. E., Damke H., Tisdale E. J., Meyerowitz E. M., Schmid S. L. Mutations in human dynamin block an intermediate stage in coated vesicle formation. J Cell Biol. 1993 Aug;122(3):553–563. doi: 10.1083/jcb.122.3.553. [DOI] [PMC free article] [PubMed] [Google Scholar]