Perforin is activated by a proteolytic cleavage during biosynthesis which reveals a phospholipid-binding C2 domain (original) (raw)

Abstract

Perforin is a secreted protein synthesized by activated cytotoxic T lymphocytes (CTL) and natural killer (NK) cells. It is a key component of the lytic machinery of these cells, being able to insert into the plasma membrane of targeted cells, forming a pore which leads to their destruction. Here we analyse the synthesis, processing and intracellular transport of perforin in the NK cell line YT. Perforin is synthesized as a 70 kDa inactive precursor which is cleaved at the C-terminus to yield a 60 kDa active form. This proteolytic cleavage occurs in an acidic compartment and can be inhibited by incubation of the cells in ammonium chloride, concanamycin A, leupeptin and E-64. The increased lytic activity of the cleaved form can be demonstrated by killing assays in which cleavage of the pro-piece is inhibited. Epitope mapping reveals that cleavage of the pro-piece occurs at the boundary of a C2 domain, which we show is able to bind phospholipid membranes in a calcium-dependent manner. We propose that removal of the pro-piece, which contains a bulky glycan, allows the C2 domain to interact with phospholipid membranes and initiate perforin pore formation.

Full Text

The Full Text of this article is available as a PDF (385.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antia R., Schlegel R. A., Williamson P. Binding of perforin to membranes is sensitive to lipid spacing and not headgroup. Immunol Lett. 1992 Apr;32(2):153–157. doi: 10.1016/0165-2478(92)90108-z. [DOI] [PubMed] [Google Scholar]
  2. Baetz K., Isaaz S., Griffiths G. M. Loss of cytotoxic T lymphocyte function in Chediak-Higashi syndrome arises from a secretory defect that prevents lytic granule exocytosis. J Immunol. 1995 Jun 1;154(11):6122–6131. [PubMed] [Google Scholar]
  3. Blumenthal R., Millard P. J., Henkart M. P., Reynolds C. W., Henkart P. A. Liposomes as targets for granule cytolysin from cytotoxic large granular lymphocyte tumors. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5551–5555. doi: 10.1073/pnas.81.17.5551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brose N., Hofmann K., Hata Y., Südhof T. C. Mammalian homologues of Caenorhabditis elegans unc-13 gene define novel family of C2-domain proteins. J Biol Chem. 1995 Oct 20;270(42):25273–25280. doi: 10.1074/jbc.270.42.25273. [DOI] [PubMed] [Google Scholar]
  5. Darmon A. J., Ley T. J., Nicholson D. W., Bleackley R. C. Cleavage of CPP32 by granzyme B represents a critical role for granzyme B in the induction of target cell DNA fragmentation. J Biol Chem. 1996 Sep 6;271(36):21709–21712. doi: 10.1074/jbc.271.36.21709. [DOI] [PubMed] [Google Scholar]
  6. Darmon A. J., Nicholson D. W., Bleackley R. C. Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B. Nature. 1995 Oct 5;377(6548):446–448. doi: 10.1038/377446a0. [DOI] [PubMed] [Google Scholar]
  7. Davletov B. A., Südhof T. C. A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. J Biol Chem. 1993 Dec 15;268(35):26386–26390. [PubMed] [Google Scholar]
  8. Essen L. O., Perisic O., Lynch D. E., Katan M., Williams R. L. A ternary metal binding site in the C2 domain of phosphoinositide-specific phospholipase C-delta1. Biochemistry. 1997 Mar 11;36(10):2753–2762. doi: 10.1021/bi962466t. [DOI] [PubMed] [Google Scholar]
  9. Griffiths G. M., Argon Y. Structure and biogenesis of lytic granules. Curr Top Microbiol Immunol. 1995;198:39–58. doi: 10.1007/978-3-642-79414-8_3. [DOI] [PubMed] [Google Scholar]
  10. Griffiths G. M. Protein sorting and secretion during CTL killing. Semin Immunol. 1997 Apr;9(2):109–115. doi: 10.1006/smim.1997.0059. [DOI] [PubMed] [Google Scholar]
  11. Grobler J. A., Essen L. O., Williams R. L., Hurley J. H. C2 domain conformational changes in phospholipase C-delta 1. Nat Struct Biol. 1996 Sep;3(9):788–795. doi: 10.1038/nsb0996-788. [DOI] [PubMed] [Google Scholar]
  12. Hameed A., Olsen K. J., Cheng L., Fox W. M., 3rd, Hruban R. H., Podack E. R. Immunohistochemical identification of cytotoxic lymphocytes using human perforin monoclonal antibody. Am J Pathol. 1992 May;140(5):1025–1030. [PMC free article] [PubMed] [Google Scholar]
  13. Henkart P. A., Millard P. J., Reynolds C. W., Henkart M. P. Cytolytic activity of purified cytoplasmic granules from cytotoxic rat large granular lymphocyte tumors. J Exp Med. 1984 Jul 1;160(1):75–93. doi: 10.1084/jem.160.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hudig D., Redelman D., Minning L. L. The requirement for proteinase activity for human lymphocyte-mediated natural cytotoxicity (NK): evidence that the proteinase is serine dependent and has aromatic amino acid specificity of cleavage. J Immunol. 1984 Nov;133(5):2647–2654. [PubMed] [Google Scholar]
  15. Ishikawa H., Shinkai Y., Yagita H., Yue C. C., Henkart P. A., Sawada S., Young H. A., Reynolds C. W., Okumura K. Molecular cloning of rat cytolysin. J Immunol. 1989 Nov 1;143(9):3069–3073. [PubMed] [Google Scholar]
  16. Kataoka T., Shinohara N., Takayama H., Takaku K., Kondo S., Yonehara S., Nagai K. Concanamycin A, a powerful tool for characterization and estimation of contribution of perforin- and Fas-based lytic pathways in cell-mediated cytotoxicity. J Immunol. 1996 May 15;156(10):3678–3686. [PubMed] [Google Scholar]
  17. Kataoka T., Takaku K., Magae J., Shinohara N., Takayama H., Kondo S., Nagai K. Acidification is essential for maintaining the structure and function of lytic granules of CTL. Effect of concanamycin A, an inhibitor of vacuolar type H(+)-ATPase, on CTL-mediated cytotoxicity. J Immunol. 1994 Nov 1;153(9):3938–3947. [PubMed] [Google Scholar]
  18. Kägi D., Vignaux F., Ledermann B., Bürki K., Depraetere V., Nagata S., Hengartner H., Golstein P. Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science. 1994 Jul 22;265(5171):528–530. doi: 10.1126/science.7518614. [DOI] [PubMed] [Google Scholar]
  19. Lichtenheld M. G., Olsen K. J., Lu P., Lowrey D. M., Hameed A., Hengartner H., Podack E. R. Structure and function of human perforin. Nature. 1988 Sep 29;335(6189):448–451. doi: 10.1038/335448a0. [DOI] [PubMed] [Google Scholar]
  20. Lowin B., Hahne M., Mattmann C., Tschopp J. Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature. 1994 Aug 25;370(6491):650–652. doi: 10.1038/370650a0. [DOI] [PubMed] [Google Scholar]
  21. Lowin B., Peitsch M. C., Tschopp J. Perforin and granzymes: crucial effector molecules in cytolytic T lymphocyte and natural killer cell-mediated cytotoxicity. Curr Top Microbiol Immunol. 1995;198:1–24. doi: 10.1007/978-3-642-79414-8_1. [DOI] [PubMed] [Google Scholar]
  22. Lowrey D. M., Aebischer T., Olsen K., Lichtenheld M., Rupp F., Hengartner H., Podack E. R. Cloning, analysis, and expression of murine perforin 1 cDNA, a component of cytolytic T-cell granules with homology to complement component C9. Proc Natl Acad Sci U S A. 1989 Jan;86(1):247–251. doi: 10.1073/pnas.86.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Masson D., Peters P. J., Geuze H. J., Borst J., Tschopp J. Interaction of chondroitin sulfate with perforin and granzymes of cytolytic T-cells is dependent on pH. Biochemistry. 1990 Dec 25;29(51):11229–11235. doi: 10.1021/bi00503a011. [DOI] [PubMed] [Google Scholar]
  24. Mellman I., Fuchs R., Helenius A. Acidification of the endocytic and exocytic pathways. Annu Rev Biochem. 1986;55:663–700. doi: 10.1146/annurev.bi.55.070186.003311. [DOI] [PubMed] [Google Scholar]
  25. Montero M., Brini M., Marsault R., Alvarez J., Sitia R., Pozzan T., Rizzuto R. Monitoring dynamic changes in free Ca2+ concentration in the endoplasmic reticulum of intact cells. EMBO J. 1995 Nov 15;14(22):5467–5475. doi: 10.1002/j.1460-2075.1995.tb00233.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nalefski E. A., Falke J. J. The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci. 1996 Dec;5(12):2375–2390. doi: 10.1002/pro.5560051201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Podack E. R., Young J. D., Cohn Z. A. Isolation and biochemical and functional characterization of perforin 1 from cytolytic T-cell granules. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8629–8633. doi: 10.1073/pnas.82.24.8629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Savary C. A., Phillips J. H., Lotzová E. Inhibition of murine natural killer cell-mediated cytotoxicity by pretreatment with ammonium chloride. J Immunol Methods. 1979;25(2):189–192. doi: 10.1016/0022-1759(79)90055-3. [DOI] [PubMed] [Google Scholar]
  29. Schiavo G., Gu Q. M., Prestwich G. D., Söllner T. H., Rothman J. E. Calcium-dependent switching of the specificity of phosphoinositide binding to synaptotagmin. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13327–13332. doi: 10.1073/pnas.93.23.13327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Seglen P. O. Inhibitors of lysosomal function. Methods Enzymol. 1983;96:737–764. doi: 10.1016/s0076-6879(83)96063-9. [DOI] [PubMed] [Google Scholar]
  31. Shinkai Y., Yoshida M. C., Maeda K., Kobata T., Maruyama K., Yodoi J., Yagita H., Okumura K. Molecular cloning and chromosomal assignment of a human perforin (PFP) gene. Immunogenetics. 1989;30(6):452–457. doi: 10.1007/BF02421177. [DOI] [PubMed] [Google Scholar]
  32. Sugita S., Hata Y., Südhof T. C. Distinct Ca(2+)-dependent properties of the first and second C2-domains of synaptotagmin I. J Biol Chem. 1996 Jan 19;271(3):1262–1265. doi: 10.1074/jbc.271.3.1262. [DOI] [PubMed] [Google Scholar]
  33. Sutton R. B., Davletov B. A., Berghuis A. M., Südhof T. C., Sprang S. R. Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold. Cell. 1995 Mar 24;80(6):929–938. doi: 10.1016/0092-8674(95)90296-1. [DOI] [PubMed] [Google Scholar]
  34. Tschopp J., Schäfer S., Masson D., Peitsch M. C., Heusser C. Phosphorylcholine acts as a Ca2+-dependent receptor molecule for lymphocyte perforin. Nature. 1989 Jan 19;337(6204):272–274. doi: 10.1038/337272a0. [DOI] [PubMed] [Google Scholar]
  35. Yodoi J., Teshigawara K., Nikaido T., Fukui K., Noma T., Honjo T., Takigawa M., Sasaki M., Minato N., Tsudo M. TCGF (IL 2)-receptor inducing factor(s). I. Regulation of IL 2 receptor on a natural killer-like cell line (YT cells). J Immunol. 1985 Mar;134(3):1623–1630. [PubMed] [Google Scholar]
  36. Zachowski A. Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem J. 1993 Aug 15;294(Pt 1):1–14. doi: 10.1042/bj2940001. [DOI] [PMC free article] [PubMed] [Google Scholar]