ras transformation is associated with decreased expression of the brm/SNF2alpha ATPase from the mammalian SWI-SNF complex (original) (raw)

Abstract

The brm and BRG-1 proteins are mutually exclusive subunits of the mammalian SWI-SNF complex. Within this complex, they provide the ATPase activity necessary for transcriptional regulation by nucleosome disruption. Both proteins were recently found to interact with the p105Rb tumor suppressor gene product, suggesting a role for the mammalian SWI-SNF complex in the control of cell growth. We show here that the expression of brm, but not BRG-1, is negatively regulated by mitogenic stimulation, and that growth arrest of mouse fibroblasts leads to increased accumulation of the brm protein. The expression of this protein is also down-regulated upon transformation by the ras oncogene. Re-introduction of brm into ras transformed cells leads to partial reversion of the transformed phenotype by a mechanism that depends on the ATPase domain of the protein. Our data suggest that increased levels of brm protein favour the withdrawal of the cell from the cycle whereas decreased expression of the brm gene may facilitate cellular transformation by various oncogenes.

Full Text

The Full Text of this article is available as a PDF (382.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alkema M. J., van der Lugt N. M., Bobeldijk R. C., Berns A., van Lohuizen M. Transformation of axial skeleton due to overexpression of bmi-1 in transgenic mice. Nature. 1995 Apr 20;374(6524):724–727. doi: 10.1038/374724a0. [DOI] [PubMed] [Google Scholar]
  2. Brizuela B. J., Elfring L., Ballard J., Tamkun J. W., Kennison J. A. Genetic analysis of the brahma gene of Drosophila melanogaster and polytene chromosome subdivisions 72AB. Genetics. 1994 Jul;137(3):803–813. doi: 10.1093/genetics/137.3.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burns L. G., Peterson C. L. Protein complexes for remodeling chromatin. Biochim Biophys Acta. 1997 Feb 7;1350(2):159–168. doi: 10.1016/s0167-4781(96)00162-5. [DOI] [PubMed] [Google Scholar]
  4. Burns L. G., Peterson C. L. The yeast SWI-SNF complex facilitates binding of a transcriptional activator to nucleosomal sites in vivo. Mol Cell Biol. 1997 Aug;17(8):4811–4819. doi: 10.1128/mcb.17.8.4811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carlson M., Laurent B. C. The SNF/SWI family of global transcriptional activators. Curr Opin Cell Biol. 1994 Jun;6(3):396–402. doi: 10.1016/0955-0674(94)90032-9. [DOI] [PubMed] [Google Scholar]
  6. Chiba H., Muramatsu M., Nomoto A., Kato H. Two human homologues of Saccharomyces cerevisiae SWI2/SNF2 and Drosophila brahma are transcriptional coactivators cooperating with the estrogen receptor and the retinoic acid receptor. Nucleic Acids Res. 1994 May 25;22(10):1815–1820. doi: 10.1093/nar/22.10.1815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dingwall A. K., Beek S. J., McCallum C. M., Tamkun J. W., Kalpana G. V., Goff S. P., Scott M. P. The Drosophila snr1 and brm proteins are related to yeast SWI/SNF proteins and are components of a large protein complex. Mol Biol Cell. 1995 Jul;6(7):777–791. doi: 10.1091/mbc.6.7.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dony C., Kessel M., Gruss P. Post-transcriptional control of myc and p53 expression during differentiation of the embryonal carcinoma cell line F9. Nature. 1985 Oct 17;317(6038):636–639. doi: 10.1038/317636a0. [DOI] [PubMed] [Google Scholar]
  9. Dunaief J. L., Strober B. E., Guha S., Khavari P. A., Alin K., Luban J., Begemann M., Crabtree G. R., Goff S. P. The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell. 1994 Oct 7;79(1):119–130. doi: 10.1016/0092-8674(94)90405-7. [DOI] [PubMed] [Google Scholar]
  10. Gorga F. R., Riney C. E., Benjamin T. L. Inositol trisphosphate levels in cells expressing wild-type and mutant polyomavirus middle T antigens: evidence for activation of phospholipase C via activation of pp60c-src. J Virol. 1990 Jan;64(1):105–112. doi: 10.1128/jvi.64.1.105-112.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Haupt Y., Alexander W. S., Barri G., Klinken S. P., Adams J. M. Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in E mu-myc transgenic mice. Cell. 1991 May 31;65(5):753–763. doi: 10.1016/0092-8674(91)90383-a. [DOI] [PubMed] [Google Scholar]
  12. Ichinose H., Garnier J. M., Chambon P., Losson R. Ligand-dependent interaction between the estrogen receptor and the human homologues of SWI2/SNF2. Gene. 1997 Mar 25;188(1):95–100. doi: 10.1016/s0378-1119(96)00785-8. [DOI] [PubMed] [Google Scholar]
  13. Imbalzano A. N., Kwon H., Green M. R., Kingston R. E. Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature. 1994 Aug 11;370(6489):481–485. doi: 10.1038/370481a0. [DOI] [PubMed] [Google Scholar]
  14. Kalpana G. V., Marmon S., Wang W., Crabtree G. R., Goff S. P. Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5. Science. 1994 Dec 23;266(5193):2002–2006. doi: 10.1126/science.7801128. [DOI] [PubMed] [Google Scholar]
  15. Khavari P. A., Peterson C. L., Tamkun J. W., Mendel D. B., Crabtree G. R. BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature. 1993 Nov 11;366(6451):170–174. doi: 10.1038/366170a0. [DOI] [PubMed] [Google Scholar]
  16. Lallemand D., Spyrou G., Yaniv M., Pfarr C. M. Variations in Jun and Fos protein expression and AP-1 activity in cycling, resting and stimulated fibroblasts. Oncogene. 1997 Feb 20;14(7):819–830. doi: 10.1038/sj.onc.1200901. [DOI] [PubMed] [Google Scholar]
  17. Marty L., Roux P., Royer M., Piechaczyk M. MoMuLV-derived self-inactivating retroviral vectors possessing multiple cloning sites and expressing the resistance to either G418 or hygromycin B. Biochimie. 1990 Dec;72(12):885–887. doi: 10.1016/0300-9084(90)90007-4. [DOI] [PubMed] [Google Scholar]
  18. Mechta F., Lallemand D., Pfarr C. M., Yaniv M. Transformation by ras modifies AP1 composition and activity. Oncogene. 1997 Feb 20;14(7):837–847. doi: 10.1038/sj.onc.1200900. [DOI] [PubMed] [Google Scholar]
  19. Muchardt C., Reyes J. C., Bourachot B., Leguoy E., Yaniv M. The hbrm and BRG-1 proteins, components of the human SNF/SWI complex, are phosphorylated and excluded from the condensed chromosomes during mitosis. EMBO J. 1996 Jul 1;15(13):3394–3402. [PMC free article] [PubMed] [Google Scholar]
  20. Muchardt C., Sardet C., Bourachot B., Onufryk C., Yaniv M. A human protein with homology to Saccharomyces cerevisiae SNF5 interacts with the potential helicase hbrm. Nucleic Acids Res. 1995 Apr 11;23(7):1127–1132. doi: 10.1093/nar/23.7.1127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Muchardt C., Yaniv M. A human homologue of Saccharomyces cerevisiae SNF2/SWI2 and Drosophila brm genes potentiates transcriptional activation by the glucocorticoid receptor. EMBO J. 1993 Nov;12(11):4279–4290. doi: 10.1002/j.1460-2075.1993.tb06112.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Noda M., Selinger Z., Scolnick E. M., Bassin R. H. Flat revertants isolated from Kirsten sarcoma virus-transformed cells are resistant to the action of specific oncogenes. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5602–5606. doi: 10.1073/pnas.80.18.5602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Orlando V., Paro R. Chromatin multiprotein complexes involved in the maintenance of transcription patterns. Curr Opin Genet Dev. 1995 Apr;5(2):174–179. doi: 10.1016/0959-437x(95)80005-0. [DOI] [PubMed] [Google Scholar]
  24. Owen-Hughes T., Utley R. T., Côté J., Peterson C. L., Workman J. L. Persistent site-specific remodeling of a nucleosome array by transient action of the SWI/SNF complex. Science. 1996 Jul 26;273(5274):513–516. doi: 10.1126/science.273.5274.513. [DOI] [PubMed] [Google Scholar]
  25. Peterson C. L. Multiple SWItches to turn on chromatin? Curr Opin Genet Dev. 1996 Apr;6(2):171–175. doi: 10.1016/s0959-437x(96)80047-5. [DOI] [PubMed] [Google Scholar]
  26. Pfarr C. M., Mechta F., Spyrou G., Lallemand D., Carillo S., Yaniv M. Mouse JunD negatively regulates fibroblast growth and antagonizes transformation by ras. Cell. 1994 Feb 25;76(4):747–760. doi: 10.1016/0092-8674(94)90513-4. [DOI] [PubMed] [Google Scholar]
  27. Randazzo F. M., Khavari P., Crabtree G., Tamkun J., Rossant J. brg1: a putative murine homologue of the Drosophila brahma gene, a homeotic gene regulator. Dev Biol. 1994 Jan;161(1):229–242. doi: 10.1006/dbio.1994.1023. [DOI] [PubMed] [Google Scholar]
  28. Savatier P., Huang S., Szekely L., Wiman K. G., Samarut J. Contrasting patterns of retinoblastoma protein expression in mouse embryonic stem cells and embryonic fibroblasts. Oncogene. 1994 Mar;9(3):809–818. [PubMed] [Google Scholar]
  29. Singh P., Coe J., Hong W. A role for retinoblastoma protein in potentiating transcriptional activation by the glucocorticoid receptor. Nature. 1995 Apr 6;374(6522):562–565. doi: 10.1038/374562a0. [DOI] [PubMed] [Google Scholar]
  30. Spinucci C., Zucker S., Wieman J. M., Lysik R. M., Imhof B., Ramamurthy N., Liotta L. A., Nagase H. Purification of a gelatin-degrading type IV collagenase secreted by ras oncogene-transformed fibroblasts. J Natl Cancer Inst. 1988 Nov 2;80(17):1416–1420. doi: 10.1093/jnci/80.17.1416. [DOI] [PubMed] [Google Scholar]
  31. Strober B. E., Dunaief J. L., Guha, Goff S. P. Functional interactions between the hBRM/hBRG1 transcriptional activators and the pRB family of proteins. Mol Cell Biol. 1996 Apr;16(4):1576–1583. doi: 10.1128/mcb.16.4.1576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sumi-Ichinose C., Ichinose H., Metzger D., Chambon P. SNF2beta-BRG1 is essential for the viability of F9 murine embryonal carcinoma cells. Mol Cell Biol. 1997 Oct;17(10):5976–5986. doi: 10.1128/mcb.17.10.5976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tamkun J. W., Deuring R., Scott M. P., Kissinger M., Pattatucci A. M., Kaufman T. C., Kennison J. A. brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell. 1992 Feb 7;68(3):561–572. doi: 10.1016/0092-8674(92)90191-e. [DOI] [PubMed] [Google Scholar]
  34. Tamkun J. W. The role of brahma and related proteins in transcription and development. Curr Opin Genet Dev. 1995 Aug;5(4):473–477. doi: 10.1016/0959-437x(95)90051-h. [DOI] [PubMed] [Google Scholar]
  35. Trouche D., Le Chalony C., Muchardt C., Yaniv M., Kouzarides T. RB and hbrm cooperate to repress the activation functions of E2F1. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11268–11273. doi: 10.1073/pnas.94.21.11268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wang W., Xue Y., Zhou S., Kuo A., Cairns B. R., Crabtree G. R. Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev. 1996 Sep 1;10(17):2117–2130. doi: 10.1101/gad.10.17.2117. [DOI] [PubMed] [Google Scholar]
  37. Wilson C. J., Chao D. M., Imbalzano A. N., Schnitzler G. R., Kingston R. E., Young R. A. RNA polymerase II holoenzyme contains SWI/SNF regulators involved in chromatin remodeling. Cell. 1996 Jan 26;84(2):235–244. doi: 10.1016/s0092-8674(00)80978-2. [DOI] [PubMed] [Google Scholar]