Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis (original) (raw)
Abstract
Apaf-1 plays a critical role in apoptosis by binding to and activating procaspase-9. We have identified a novel Apaf-1 cDNA encoding a protein of 1248 amino acids containing an insertion of 11 residues between the CARD and ATPase domains, and another 43 amino acid insertion creating an additional WD-40 repeat. The product of this Apaf-1 cDNA activated procaspase-9 in a cytochrome c and dATP/ATP-dependent manner. We used this Apaf-1 to show that Apaf-1 requires dATP/ATP hydrolysis to interact with cytochrome c, self-associate and bind to procaspase-9. A P-loop mutant (Apaf-1K160R) was unable to associate with Apaf-1 or bind to procaspase-9. Mutation of Met368 to Leu enabled Apaf-1 to self-associate and bind procaspase-9 independent of cytochrome c, though still requiring dATP/ATP for these activities. The Apaf-1M368L mutant exhibited greater ability to induce apoptosis compared with the wild-type Apaf-1. We also show that procaspase-9 can recruit procaspase-3 to the Apaf-1-procaspase-9 complex. Apaf-1(1-570), a mutant lacking the WD-40 repeats, associated with and activated procaspase-9, but failed to recruit procaspase-3 and induce apoptosis. These results suggest that the WD-40 repeats may be involved in procaspase-9-mediated procaspase-3 recruitment. These studies elucidate biochemical steps required for Apaf-1 to activate procaspase-9 and induce apoptosis.
Full Text
The Full Text of this article is available as a PDF (290.2 KB).