Sizing membrane pores in lipid vesicles by leakage of co-encapsulated markers: pore formation by melittin (original) (raw)

Abstract

Many toxins and antimicrobial peptides permeabilize membrane vesicles by forming multimeric pores. Determination of the size of such pores is an important first step for understanding their structure and the mechanism of their self-assembly. We report a simple method for sizing pores in vesicles based on the differential release of co-encapsulated fluorescently labeled dextran markers of two different sizes. The method was tested using the bee venom peptide melittin, which was found to form pores of 25-30 A diameter in palmitoyloleoylphosphatidylcholine (POPC) vesicles at a lipid-to-peptide ratio of 50. This result is consistent with observations on melittin pore formation in erythrocytes (Katsu, T., C. Ninomiya, M. Kuroko, H. Kobayashi, T. Hirota, and Y. Fujita 1988. Action mechanism of amphipathic peptides gramicidin S and melittin on erythrocyte membrane Biochim. Biophys. Acta. 939:57-63).

1762

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benachir T., Lafleur M. Study of vesicle leakage induced by melittin. Biochim Biophys Acta. 1995 May 4;1235(2):452–460. doi: 10.1016/0005-2736(95)80035-e. [DOI] [PubMed] [Google Scholar]
  2. Bohrer M. P., Deen W. M., Robertson C. R., Troy J. L., Brenner B. M. Influence of molecular configuration on the passage of macromolecules across the glomerular capillary wall. J Gen Physiol. 1979 Nov;74(5):583–593. doi: 10.1085/jgp.74.5.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DeGrado W. F., Musso G. F., Lieber M., Kaiser E. T., Kézdy F. J. Kinetics and mechanism of hemolysis induced by melittin and by a synthetic melittin analogue. Biophys J. 1982 Jan;37(1):329–338. doi: 10.1016/S0006-3495(82)84681-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dempsey C. E. The actions of melittin on membranes. Biochim Biophys Acta. 1990 May 7;1031(2):143–161. doi: 10.1016/0304-4157(90)90006-x. [DOI] [PubMed] [Google Scholar]
  5. Donoso J., Muñoz F., Garcia Blanco F. Quantitative description of the absorption spectra of the coenzyme in glycogen phosphorylases based on log-normal distribution curves. Biochem J. 1993 May 15;292(Pt 1):225–229. doi: 10.1042/bj2920225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dufourcq J., Faucon J. F., Fourche G., Dasseux J. L., Le Maire M., Gulik-Krzywicki T. Morphological changes of phosphatidylcholine bilayers induced by melittin: vesicularization, fusion, discoidal particles. Biochim Biophys Acta. 1986 Jul 10;859(1):33–48. doi: 10.1016/0005-2736(86)90315-9. [DOI] [PubMed] [Google Scholar]
  7. Katsu T., Ninomiya C., Kuroko M., Kobayashi H., Hirota T., Fujita Y. Action mechanism of amphipathic peptides gramicidin S and melittin on erythrocyte membrane. Biochim Biophys Acta. 1988 Mar 22;939(1):57–63. doi: 10.1016/0005-2736(88)90047-8. [DOI] [PubMed] [Google Scholar]
  8. Ladokhin A. S., Wimley W. C., White S. H. Leakage of membrane vesicle contents: determination of mechanism using fluorescence requenching. Biophys J. 1995 Nov;69(5):1964–1971. doi: 10.1016/S0006-3495(95)80066-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Matsuzaki K., Murase O., Tokuda H., Funakoshi S., Fujii N., Miyajima K. Orientational and aggregational states of magainin 2 in phospholipid bilayers. Biochemistry. 1994 Mar 22;33(11):3342–3349. doi: 10.1021/bi00177a027. [DOI] [PubMed] [Google Scholar]
  10. Mayer L. D., Hope M. J., Cullis P. R. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta. 1986 Jun 13;858(1):161–168. doi: 10.1016/0005-2736(86)90302-0. [DOI] [PubMed] [Google Scholar]
  11. Monette M., Lafleur M. Influence of lipid chain unsaturation on melittin-induced micellization. Biophys J. 1996 May;70(5):2195–2202. doi: 10.1016/S0006-3495(96)79785-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ostolaza H., Bartolomé B., Ortiz de Zárate I., de la Cruz F., Goñi F. M. Release of lipid vesicle contents by the bacterial protein toxin alpha-haemolysin. Biochim Biophys Acta. 1993 Apr 8;1147(1):81–88. doi: 10.1016/0005-2736(93)90318-t. [DOI] [PubMed] [Google Scholar]
  13. Parente R. A., Nir S., Szoka F. C., Jr Mechanism of leakage of phospholipid vesicle contents induced by the peptide GALA. Biochemistry. 1990 Sep 18;29(37):8720–8728. doi: 10.1021/bi00489a031. [DOI] [PubMed] [Google Scholar]
  14. Rapaport D., Peled R., Nir S., Shai Y. Reversible surface aggregation in pore formation by pardaxin. Biophys J. 1996 Jun;70(6):2502–2512. doi: 10.1016/S0006-3495(96)79822-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rex S. Pore formation induced by the peptide melittin in different lipid vesicle membranes. Biophys Chem. 1996 Jan 16;58(1-2):75–85. doi: 10.1016/0301-4622(95)00087-9. [DOI] [PubMed] [Google Scholar]
  16. Sabirov R. Z., Krasil'nikov O. V., Merkulova S. V., Kostrzhevskaia E. G., Shcherbatskaia N. V. Deistvie anionov na gemoliticheskuiu aktivnost' melittina. Ukr Biokhim Zh (1978) 1990 Jan-Feb;62(1):87–91. [PubMed] [Google Scholar]
  17. Schwarz G., Arbuzova A. Pore kinetics reflected in the dequenching of a lipid vesicle entrapped fluorescent dye. Biochim Biophys Acta. 1995 Oct 4;1239(1):51–57. doi: 10.1016/0005-2736(95)00134-o. [DOI] [PubMed] [Google Scholar]
  18. Schwarz G., Zong R. T., Popescu T. Kinetics of melittin induced pore formation in the membrane of lipid vesicles. Biochim Biophys Acta. 1992 Sep 21;1110(1):97–104. doi: 10.1016/0005-2736(92)90299-2. [DOI] [PubMed] [Google Scholar]
  19. Tosteson M. T., Holmes S. J., Razin M., Tosteson D. C. Melittin lysis of red cells. J Membr Biol. 1985;87(1):35–44. doi: 10.1007/BF01870697. [DOI] [PubMed] [Google Scholar]
  20. Vogel H., Jähnig F. The structure of melittin in membranes. Biophys J. 1986 Oct;50(4):573–582. doi: 10.1016/S0006-3495(86)83497-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wimley W. C., Selsted M. E., White S. H. Interactions between human defensins and lipid bilayers: evidence for formation of multimeric pores. Protein Sci. 1994 Sep;3(9):1362–1373. doi: 10.1002/pro.5560030902. [DOI] [PMC free article] [PubMed] [Google Scholar]