The effect of genetic complexity on the time-course of ribonucleic acid–deoxyribonucleic acid hybridization (original) (raw)

Abstract

1. The rate of RNA–DNA hybridization was studied under conditions of RNA excess, with RNA synthesized in vitro. The initial rate of the reaction was proportional to the initial RNA concentration. Throughout the observed course of the reaction there was a linear relationship between the reciprocal of the amount of RNA hybridized/μg. of DNA and the reciprocal of time. The slope of the reciprocal plot was inversely proportional to the initial RNA concentration. 2. A comparison was made of the hybridization of DNA from Escherichia coli and from bacteriophages T4 and λ with homologous RNA. The initial rate of hybridization was inversely proportional to the genetic complexity of the hybridizing system. The slope of the reciprocal-time plot was directly proportional to genetic complexity. These results are interpreted to indicate that the rate of hybridization reflects the mean concentration of the various unique RNA species in a preparation.

805

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOLLUM F. J. Thermal conversion of nonpriming deoxyribonucleic acid to primer. J Biol Chem. 1959 Oct;234:2733–2734. [PubMed] [Google Scholar]
  2. Britten R. J., Kohne D. E. Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science. 1968 Aug 9;161(3841):529–540. doi: 10.1126/science.161.3841.529. [DOI] [PubMed] [Google Scholar]
  3. Church R. B., McCarthy B. J. Related base sequences in the DNA of simple and complex organisms. II. The interpretation of DNA-RNA hybridization studies with mammalian nucleic acids. Biochem Genet. 1968 Jun;2(1):55–73. doi: 10.1007/BF01458451. [DOI] [PubMed] [Google Scholar]
  4. GEIDUSCHEK E. P., NAKAMOTO T., WEISS S. B. The enzymatic synthesis of RNA: complementary interaction with DNA. Proc Natl Acad Sci U S A. 1961 Sep 15;47:1405–1415. doi: 10.1073/pnas.47.9.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Geiduschek E. P., Snyder L., Colvill A. J., Sarnat M. Selective synthesis of T-even bacteriophage early messenger in vitro. J Mol Biol. 1966 Aug;19(2):541–547. doi: 10.1016/s0022-2836(66)80021-9. [DOI] [PubMed] [Google Scholar]
  6. Gillespie D., Spiegelman S. A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J Mol Biol. 1965 Jul;12(3):829–842. doi: 10.1016/s0022-2836(65)80331-x. [DOI] [PubMed] [Google Scholar]
  7. HALL B. D., SPIEGELMAN S. Sequence complementarity of T2-DNA and T2-specific RNA. Proc Natl Acad Sci U S A. 1961 Feb 15;47:137–163. doi: 10.1073/pnas.47.2.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. MANDELL J. D., HERSHEY A. D. A fractionating column for analysis of nucleic acids. Anal Biochem. 1960 Jun;1:66–77. doi: 10.1016/0003-2697(60)90020-8. [DOI] [PubMed] [Google Scholar]
  9. MARMUR J., DOTY P. Thermal renaturation of deoxyribonucleic acids. J Mol Biol. 1961 Oct;3:585–594. doi: 10.1016/s0022-2836(61)80023-5. [DOI] [PubMed] [Google Scholar]
  10. Melli M., Bishop J. O. Hybridization between rat liver DNA and complementary RNA. J Mol Biol. 1969 Feb 28;40(1):117–136. doi: 10.1016/0022-2836(69)90300-3. [DOI] [PubMed] [Google Scholar]
  11. NAKAMOTO T., FOX C. F., WEISS S. B. ENZYMATIC SYNTHESIS OF RIBONUCLEIC ACID. I. PREPARATION OF RIBONUCLEIC ACID POLYMERASE FROM EXTRACTS OF MICROCOCCUS LYSODEIKTICUS. J Biol Chem. 1964 Jan;239:167–174. [PubMed] [Google Scholar]
  12. NYGAARD A. P., HALL B. D. FORMATION AND PROPERTIES OF RNA-DNA COMPLEXES. J Mol Biol. 1964 Jul;9:125–142. doi: 10.1016/s0022-2836(64)80095-4. [DOI] [PubMed] [Google Scholar]
  13. ROBINSON W. S., HSU W. I., FOX C. F., WEISS S. B. ENZYMATIC SYNTHESIS OF RIBONUCLEIC ACID. IV. THE DEOXYRIBONUCLEIC ACID-DIRECTED SYNTHESIS OF COMPLEMENTARY CYTOPLASMIC RIBONUCLEIC ACID COMPONENTS. J Biol Chem. 1964 Sep;239:2944–2951. [PubMed] [Google Scholar]
  14. Thrower K. J., Peacocke A. R. Kinetic and spectrophotometric studies on the renaturation of deoxyribonucleic acid. Biochem J. 1968 Oct;109(4):543–557. doi: 10.1042/bj1090543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wetmur J. G., Davidson N. Kinetics of renaturation of DNA. J Mol Biol. 1968 Feb 14;31(3):349–370. doi: 10.1016/0022-2836(68)90414-2. [DOI] [PubMed] [Google Scholar]