Protein thiolation and reversible protein-protein conjugation. N-Succinimidyl 3-(2-pyridyldithio)propionate, a new heterobifunctional reagent. (original) (raw)

Biochem J. 1978 Sep 1; 173(3): 723–737.

Abstract

A heterobifunctional reagent, N-succinimidyl 3-(2-pyridyldithio)propionate, was synthesized. Its N-hydroxysuccinimide ester group reacts with amino groups and the 2-pyridyl disulphide structure reacts with aliphatic thiols. A new thiolation procedure for proteins is based on this reagent. The procedure involves two steps. First, 2-pyridyl disulphide structures are introduced into the protein by the reaction of some of its amino groups with the N-hydroxysuccinimide ester sie of the reagent. The protein-bound 2-pyridyl disulphide structures are then reduced with dithiothreitol. This reaction can be carried out without concomitant reduction of native disulphide bonds. The technique has been used for the introduction of thiol groups de novo into ribonuclease, gamma-globulin, alpha-amylase and horseradish peroxidase. N-Succinimidyl 3-(2-pyridyldithio)propionate can also be used for the preparation of protein-protein conjugates. This application is based on the fact that protein-2-pyridyl disulphide derivatives (formed from the reaction of non-thiol proteins with the reagent) react with thiol-containing proteins (with native thiols or thiolated by, for example, the method described above) via thiol-disulphide exchange to form disulphide-linked protein-protein conjugates. This conjugation technique has been used for the preparation of an alpha-amylase-urease, a ribonuclease-albumin and a peroxidase-rabbit anti-(human transferrin) antibody conjugate. The disulphide bridges between the protein molecules can easily be split by reduction or by thiol-disulphide exchange. Thus conjugation is reversible. This has been demonstrated by scission of the ribonuclease-albumin and the alpha-amylase-urease conjugate into their components with dithiothreitol. N-Succinimidyl 3-(2-pyridyldithio)propionate has been prepared in crystalline form, in which state (if protected against humidity) it is stable on storage at room temperature (23 degrees C).

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.0M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.


Articles from Biochemical Journal are provided here courtesy of The Biochemical Society