Characteristics of phasic and tonic sympathetic ganglion cells of the guinea-pig (original) (raw)

Abstract

Intracellular recording techniques have been used to determine the electrophysiological properties of sympathetic neurones in ganglia of the caudal lumbar sympathetic chain (l.s.c.) and in the distal lobes of inferior mesenteric ganglia (i.m.g.) isolated from guinea-pigs. Passage of suprathreshold depolarizing current initiated transient bursts of action potentials in 97% of l.s.c. neurones, but only 13% of i.m.g. cells ('phasic' neurones). Most i.m.g. neurones fired continuously during prolonged depolarizing pulses ('tonic' neurones). Passive membrane properties varied; mean cell input resistance was similar between groups, but phasic neurones had smaller major input time constants on average than had tonic cells. Current-voltage relations determined under both current clamp and voltage clamp were linear around resting membrane potential (approximately 60 mV), where membrane conductance was lowest. Instantaneous and time-dependent rectification varied in the different neurone types. The current underlying the after-hyperpolarization following the action potential was significantly larger on average in tonic i.m.g. cells than in phasic neurones, although its time course (tau = 100 ms) was similar. Phasic neurones fired tonically when depolarized after adding the muscarinic agonist, bethanechol (10(-5) M to 10(-4) M), to the bathing solution. Bethanechol blocked a proportion of the maintained outward current (presumably the M-current, IM, Adams, Brown & Constanti, 1982) in phasic neurones; this current was small or absent in tonic neurones. Transient outward currents resembling the A-current (IA, Connor & Stevens, 1971 a) were evoked in tonic but not in phasic neurones by depolarization from resting membrane potential. IA could only be demonstrated in phasic neurones after a period of conditioning hyperpolarization. After a step depolarization to approximately --50 mV, IA reached peak amplitude at about 7 ms and then decayed with a time constant of about 25 ms in both neurone types. Activation characteristics of IA were similar for phasic and tonic neurones, but inactivation curves, although having the same shape, were shifted to more depolarized voltages in tonic neurones. That is, IA was largely inactivated at resting membrane potential in phasic, but not tonic neurones. It is concluded that the discharge patterns of the two populations of sympathetic neurones result from differences in the voltage-dependent potassium channels present in their membranes. The anatomical occurrence of the different cell types suggests that phasic neurones are vasoconstrictor and tonic neurones are involved with visceral motility.

457

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams P. R., Brown D. A., Constanti A. M-currents and other potassium currents in bullfrog sympathetic neurones. J Physiol. 1982 Sep;330:537–572. doi: 10.1113/jphysiol.1982.sp014357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baron R., Jänig W., McLachlan E. M. On the anatomical organization of the lumbosacral sympathetic chain and the lumbar splanchnic nerves of the cat--Langley revisited. J Auton Nerv Syst. 1985 Apr;12(4):289–300. doi: 10.1016/0165-1838(85)90044-x. [DOI] [PubMed] [Google Scholar]
  3. Baron R., Jänig W., McLachlan E. M. The afferent and sympathetic components of the lumbar spinal outflow to the colon and pelvic organs in the cat. I. The hypogastric nerve. J Comp Neurol. 1985 Aug 8;238(2):135–146. doi: 10.1002/cne.902380202. [DOI] [PubMed] [Google Scholar]
  4. Barrett E. F., Barrett J. N., Crill W. E. Voltage-sensitive outward currents in cat motoneurones. J Physiol. 1980 Jul;304:251–276. doi: 10.1113/jphysiol.1980.sp013323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Belluzzi O., Sacchi O., Wanke E. A fast transient outward current in the rat sympathetic neurone studied under voltage-clamp conditions. J Physiol. 1985 Jan;358:91–108. doi: 10.1113/jphysiol.1985.sp015542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown D. A., Adams P. R., Constanti A. Voltage-sensitive K-currents in sympathetic neurons and their modulation by neurotransmitters. J Auton Nerv Syst. 1982 Jul;6(1):23–35. doi: 10.1016/0165-1838(82)90019-4. [DOI] [PubMed] [Google Scholar]
  7. Brown D. A., Constanti A. Intracellular observations on the effects of muscarinic agonists on rat sympathetic neurones. Br J Pharmacol. 1980 Dec;70(4):593–608. doi: 10.1111/j.1476-5381.1980.tb09778.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brown D. A., Griffith W. H. Calcium-activated outward current in voltage-clamped hippocampal neurones of the guinea-pig. J Physiol. 1983 Apr;337:287–301. doi: 10.1113/jphysiol.1983.sp014624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brown T. H., Fricke R. A., Perkel D. H. Passive electrical constants in three classes of hippocampal neurons. J Neurophysiol. 1981 Oct;46(4):812–827. doi: 10.1152/jn.1981.46.4.812. [DOI] [PubMed] [Google Scholar]
  10. Connor J. A. Slow repetitive activity from fast conductance changes in neurons. Fed Proc. 1978 Jun;37(8):2139–2145. [PubMed] [Google Scholar]
  11. Connor J. A., Stevens C. F. Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma. J Physiol. 1971 Feb;213(1):31–53. doi: 10.1113/jphysiol.1971.sp009366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Connor J. A., Stevens C. F. Voltage clamp studies of a transient outward membrane current in gastropod neural somata. J Physiol. 1971 Feb;213(1):21–30. doi: 10.1113/jphysiol.1971.sp009365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Connor J. A., Walter D., McKown R. Neural repetitive firing: modifications of the Hodgkin-Huxley axon suggested by experimental results from crustacean axons. Biophys J. 1977 Apr;18(1):81–102. doi: 10.1016/S0006-3495(77)85598-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Constanti A., Brown D. A. M-Currents in voltage-clamped mammalian sympathetic neurones. Neurosci Lett. 1981 Jul 17;24(3):289–294. doi: 10.1016/0304-3940(81)90173-7. [DOI] [PubMed] [Google Scholar]
  15. Crowcroft P. J., Szurszewski J. H. A study of the inferior mesenteric and pelvic ganglia of guinea-pigs with intracellular electrodes. J Physiol. 1971 Dec;219(2):421–441. doi: 10.1113/jphysiol.1971.sp009670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Decktor D. L., Weems W. A. A study of renal-efferent neurones and their neural connexions within cat renal ganglia using intracellular electrodes. J Physiol. 1981 Dec;321:611–626. doi: 10.1113/jphysiol.1981.sp014006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Decktor D. L., Weems W. A. An intracellular characterization of neurones and neural connexions within the left coeliac ganglion of cats. J Physiol. 1983 Aug;341:197–211. doi: 10.1113/jphysiol.1983.sp014801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Freschi J. E. Membrane currents of cultured rat sympathetic neurons under voltage clamp. J Neurophysiol. 1983 Dec;50(6):1460–1478. doi: 10.1152/jn.1983.50.6.1460. [DOI] [PubMed] [Google Scholar]
  19. Galvan M., Sedlmeir C. Outward currents in voltage-clamped rat sympathetic neurones. J Physiol. 1984 Nov;356:115–133. doi: 10.1113/jphysiol.1984.sp015456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Griffith W. H., 3rd, Gallagher J. P., Shinnick-Gallagher P. An intracellular investigation of cat vesical pelvic ganglia. J Neurophysiol. 1980 Feb;43(2):343–354. doi: 10.1152/jn.1980.43.2.343. [DOI] [PubMed] [Google Scholar]
  21. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Halliwell J. V., Adams P. R. Voltage-clamp analysis of muscarinic excitation in hippocampal neurons. Brain Res. 1982 Oct 28;250(1):71–92. doi: 10.1016/0006-8993(82)90954-4. [DOI] [PubMed] [Google Scholar]
  23. Hirst G. D., Johnson S. M., van Helden D. F. The calcium current in a myenteric neurone of the guinea-pig ileum. J Physiol. 1985 Apr;361:297–314. doi: 10.1113/jphysiol.1985.sp015647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jack J. J., Redman S. J. The propagation of transient potentials in some linear cable structures. J Physiol. 1971 Jun;215(2):283–320. doi: 10.1113/jphysiol.1971.sp009472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Julé Y., Szurszewski J. H. Electrophysiology of neurones of the inferior mesenteric ganglion of the cat. J Physiol. 1983 Nov;344:277–292. doi: 10.1113/jphysiol.1983.sp014939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kreulen D. L., Szurszewski J. H. Nerve pathways in celiac plexus of the guinea pig. Am J Physiol. 1979 Jul;237(1):E90–E97. doi: 10.1152/ajpendo.1979.237.1.E90. [DOI] [PubMed] [Google Scholar]
  27. Kuo D. C., Hisamitsu T., de Groat W. C. A sympathetic projection from sacral paravertebral ganglia to the pelvic nerve and to postganglionic nerves on the surface of the urinary bladder and large intestine of the cat. J Comp Neurol. 1984 Jun 10;226(1):76–86. doi: 10.1002/cne.902260106. [DOI] [PubMed] [Google Scholar]
  28. Langley J. N., Anderson H. K. On the Innervation of the Pelvic and Adjoining Viscera: Part I. The Lower Portion of the Intestine. J Physiol. 1895 May 20;18(1-2):67–105. doi: 10.1113/jphysiol.1895.sp000558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Langley J. N., Anderson H. K. The Innervation of the Pelvic and adjoining Viscera: Part II. The Bladder. Part III. The External Generative Organs. Part IV. The Internal Generative Organs. Part V. Position of the Nerve Cells on the Course of the Efferent Nerve Fibres. J Physiol. 1895 Dec 30;19(1-2):71–139. doi: 10.1113/jphysiol.1895.sp000587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Langley J. N., Anderson H. K. The Innervation of the Pelvic and adjoining Viscera: Part VII. Anatomical Observations. J Physiol. 1896 Oct 19;20(4-5):372–406. doi: 10.1113/jphysiol.1896.sp000629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Madison D. V., Nicoll R. A. Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro. J Physiol. 1984 Sep;354:319–331. doi: 10.1113/jphysiol.1984.sp015378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. McAfee D. A., Yarowsky P. J. Calcium-dependent potentials in the mammalian sympathetic neurone. J Physiol. 1979 May;290(2):507–523. doi: 10.1113/jphysiol.1979.sp012787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. McLachlan E. M., Jänig W. The cell bodies of origin of sympathetic and sensory axons in some skin and muscle nerves of the cat hindlimb. J Comp Neurol. 1983 Feb 20;214(2):115–130. doi: 10.1002/cne.902140202. [DOI] [PubMed] [Google Scholar]
  34. McLachlan E. M., Oldfield B. J., Sittiracha T. Localization of hindlimb vasomotor neurones in the lumbar spinal cord of the guinea pig. Neurosci Lett. 1985 Mar 15;54(2-3):269–275. doi: 10.1016/s0304-3940(85)80090-2. [DOI] [PubMed] [Google Scholar]
  35. McLachlan E. M. The formation of synapses in mammalian sympathetic ganglia reinnervated with preganglionic or somatic nerves. J Physiol. 1974 Feb;237(1):217–242. doi: 10.1113/jphysiol.1974.sp010479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Neher E. Two fast transient current components during voltage clamp on snail neurons. J Gen Physiol. 1971 Jul;58(1):36–53. doi: 10.1085/jgp.58.1.36. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. North R. A., Tokimasa T. Depression of calcium-dependent potassium conductance of guinea-pig myenteric neurones by muscarinic agonists. J Physiol. 1983 Sep;342:253–266. doi: 10.1113/jphysiol.1983.sp014849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. RALL W. Membrane potential transients and membrane time constant of motoneurons. Exp Neurol. 1960 Oct;2:503–532. doi: 10.1016/0014-4886(60)90029-7. [DOI] [PubMed] [Google Scholar]
  39. Weems W. A., Szurszewski J. H. An intracellular analysis of some intrinsic factors controlling neural output from inferior mesenteric ganglion of guinea pigs. J Neurophysiol. 1978 Mar;41(2):305–321. doi: 10.1152/jn.1978.41.2.305. [DOI] [PubMed] [Google Scholar]