Injection of guanosine and adenosine nucleotides into Limulus ventral photoreceptor cells (original) (raw)

Abstract

1. Several nucleotide and nucleotide analogues had striking effects when pressure-injected into Limulus ventral photoreceptor cells. The poorly hydrolysable GTP analogues guanosine 5′-0-(3-thiotriphosphate) (GTPγS), guanylyl imidodiphosphate (Gpp[NH]p) and guanylyl (β, γ methylene) diphosphonate (Gpp[CH2]p) produced large increases in the frequency of `discrete events' that were recorded from photoreceptors in darkness. This effect was only observed after the injected cell was exposed to light. Injection of the ATP analogue ATPγS had effects similar to those of the GTP analogues.

2. We conclude that GTPγS, Gpp[NH]p, Gpp[CH2]p and ATPγS act at a common site to cause a light-dependent, long-term activation of the excitation mechanism of the photoreceptor.

3. Injection of GTP or GDP at pH 4.8 was followed by a smooth, transient depolarization that was observed neither when GTP at pH 7.5 was injected nor when ATP, 5′GMP or 2-[_N_-morpholino] ethane sulphonic acid (MES) were injected at pH 4.8. The reversal potential of the current induced by GTP injection was significantly more positive than the reversal potential of the light-induced current.

4. We conclude that GTP injection induces changes of membrane conductance either in addition to, or different from, the light-induced change of membrane conductance.

5. Injection of the ATP analogue adenylyl imidodiphosphate (App[NH]p), and the pyrophosphate analogue imidodiphosphate (p[NH]p) produced a drastic decrease in the sensitivity of photoreceptors to light. This decrease in sensitivity was partially reversed when the concentration of calcium ions in the bathing medium was reduced.

6. We suggest that App[NH]p and p[NH]p injections act by increasing the cytoplasmic concentration of calcium ions.

325

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown J. E. Calcium ion, a putative intracellular messenger for light-adaptation in Limulus ventral photoreceptors. Biophys Struct Mech. 1977 Jun 29;3(2):141–143. doi: 10.1007/BF00535809. [DOI] [PubMed] [Google Scholar]
  2. Brown J. E., Mote M. I. Ionic dependence of reversal voltage of the light response in Limulus ventral photoreceptors. J Gen Physiol. 1974 Mar;63(3):337–350. doi: 10.1085/jgp.63.3.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clark R. B. Adenylylimidodiphosphate: effect of contaminants on adenylate cyclase activity. J Cyclic Nucleotide Res. 1978 Aug;4(4):259–270. [PubMed] [Google Scholar]
  4. Eckstein F., Cassel D., Levkovitz H., Lowe M., Selinger Z. Guanosine 5'-O-(2-thiodiphosphate). An inhibitor of adenylate cyclase stimulation by guanine nucleotides and fluoride ions. J Biol Chem. 1979 Oct 10;254(19):9829–9834. [PubMed] [Google Scholar]
  5. FUORTES M. G., YEANDLE S. PROBABILITY OF OCCURRENCE OF DISCRETE POTENTIAL WAVES IN THE EYE OF LIMULUS. J Gen Physiol. 1964 Jan;47:443–463. doi: 10.1085/jgp.47.3.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fein A., Corson D. W. Excitation of Limulus photoreceptors by vanadate and by a hydrolysis-resistant analog of guanosine triphosphate. Science. 1981 May 1;212(4494):555–557. doi: 10.1126/science.6782676. [DOI] [PubMed] [Google Scholar]
  7. Gill D. M., Meren R. ADP-ribosylation of membrane proteins catalyzed by cholera toxin: basis of the activation of adenylate cyclase. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3050–3054. doi: 10.1073/pnas.75.7.3050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goody R. S., Eckstein F., Schirmer R. H. The enzymatic synthesis of thiophosphate analogs of nucleotides. Biochim Biophys Acta. 1972 Jul 13;276(1):155–161. doi: 10.1016/0005-2744(72)90016-2. [DOI] [PubMed] [Google Scholar]
  9. HUBBARD R., WALD G. Visual pigment of the horseshoe crab, Limulus polyphemus. Nature. 1960 Apr 16;186:212–215. doi: 10.1038/186212b0. [DOI] [PubMed] [Google Scholar]
  10. Johnson G. L., Kaslow H. R., Farfel Z., Bourne H. R. Genetic analysis of hormone-sensitive adenylate cyclase. Adv Cyclic Nucleotide Res. 1980;13:1–37. [PubMed] [Google Scholar]
  11. Lisman J. E., Brown J. E. Light-induced changes of sensitivity in Limulus ventral photoreceptors. J Gen Physiol. 1975 Oct;66(4):473–488. doi: 10.1085/jgp.66.4.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lisman J. E., Brown J. E. The effects of intracellular iontophoretic injection of calcium and sodium ions on the light response of Limulus ventral photoreceptors. J Gen Physiol. 1972 Jun;59(6):701–719. doi: 10.1085/jgp.59.6.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lisman J. E. Effects of removing extracellular Ca2+ on excitation and adaptation in Limulus ventral photoreceptors. Biophys J. 1976 Nov;16(11):1331–1335. doi: 10.1016/S0006-3495(76)85777-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Millecchia R., Mauro A. The ventral photoreceptor cells of Limulus. 3. A voltage-clamp study. J Gen Physiol. 1969 Sep;54(3):331–351. doi: 10.1085/jgp.54.3.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Millecchia R., Mauro A. The ventral photoreceptor cells of Limulus. II. The basic photoresponse. J Gen Physiol. 1969 Sep;54(3):310–330. doi: 10.1085/jgp.54.3.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Orly J., Schramm M. Fatty acids as modulators of membrane functions: catecholamine-activated adenylate cyclase of the turkey erythrocyte. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3433–3437. doi: 10.1073/pnas.72.9.3433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pfeuffer T., Helmreich E. J. Activation of pigeon erythrocyte membrane adenylate cyclase by guanylnucleotide analogues and separation of a nucleotide binding protein. J Biol Chem. 1975 Feb 10;250(3):867–876. [PubMed] [Google Scholar]
  18. Ross E. M., Gilman A. G. Biochemical properties of hormone-sensitive adenylate cyclase. Annu Rev Biochem. 1980;49:533–564. doi: 10.1146/annurev.bi.49.070180.002533. [DOI] [PubMed] [Google Scholar]
  19. Yeandle S., Spiegler J. B. Light-evoked and spontaneous discrete waves in the ventral nerve photoreceptor of Limulus. J Gen Physiol. 1973 May;61(5):552–571. doi: 10.1085/jgp.61.5.552. [DOI] [PMC free article] [PubMed] [Google Scholar]