Functional Changes Associated with Structural Alterations Induced by Mobilization of a P Element Inserted in the Sex-lethal Gene of Drosophila (original) (raw)

Abstract

Genetic analysis of rearrangements within the multifunctional sex determining gene Sex-lethal has allowed correlation of changes in specific functions with DNA alterations. Rearrangements were isolated by mobilization of a P element which is on the 5' side of the gene, at coordinate 0. Previous work has shown that rearrangements associated with alterations in Sxl gene function are found within an 11-kb region between coordinates -11 and 0. Here it is shown that insertion of foreign DNA, per se, at coordinate 0 is compatible with wild-type gene function. However, deletion of sequences on either side of this point generates a mutant phenotype. Deletions extending distally beyond coordinate -6.5 kb result in a null phenotype, whereas smaller distal deletions or proximal deletions eliminate only some Sxl functions.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker B. S., Belote J. M. Sex determination and dosage compensation in Drosophila melanogaster. Annu Rev Genet. 1983;17:345–393. doi: 10.1146/annurev.ge.17.120183.002021. [DOI] [PubMed] [Google Scholar]
  2. Cline T. W. Autoregulatory functioning of a Drosophila gene product that establish es and maintains the sexually determined state. Genetics. 1984 Jun;107(2):231–277. doi: 10.1093/genetics/107.2.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Johnson T. K., Judd B. H. Analysis of the Cut Locus of DROSOPHILA MELANOGASTER. Genetics. 1979 Jun;92(2):485–502. doi: 10.1093/genetics/92.2.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Lefevre G. The distribution of randomly recovered X-ray-induced sex-linked genetic effects in Drosophila melanogaster. Genetics. 1981 Nov-Dec;99(3-4):461–480. doi: 10.1093/genetics/99.3-4.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lucchesi J. C., Skripsky T. The link between dosage compensation and sex differentiation in Drosophila melanogaster. Chromosoma. 1981;82(2):217–227. doi: 10.1007/BF00286106. [DOI] [PubMed] [Google Scholar]
  6. Maine E. M., Salz H. K., Cline T. W., Schedl P. The Sex-lethal gene of Drosophila: DNA alterations associated with sex-specific lethal mutations. Cell. 1985 Dec;43(2 Pt 1):521–529. doi: 10.1016/0092-8674(85)90181-3. [DOI] [PubMed] [Google Scholar]
  7. Nicklas J. A., Cline T. W. Vital Genes That Flank Sex-Lethal, an X-Linked Sex-Determining Gene of DROSOPHILA MELANOGASTER. Genetics. 1983 Apr;103(4):617–631. doi: 10.1093/genetics/103.4.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Perrimon N., Gans M. Clonal analysis of the tissue specificity of recessive female-sterile mutations of Drosophila melanogaster using a dominant female-sterile mutation Fs(1)K1237. Dev Biol. 1983 Dec;100(2):365–373. doi: 10.1016/0012-1606(83)90231-2. [DOI] [PubMed] [Google Scholar]
  9. Perrimon N., Mohler D., Engstrom L., Mahowald A. P. X-linked female-sterile loci in Drosophila melanogaster. Genetics. 1986 Jul;113(3):695–712. doi: 10.1093/genetics/113.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Schüpbach T. Normal female germ cell differentiation requires the female X chromosome to autosome ratio and expression of sex-lethal in Drosophila melanogaster. Genetics. 1985 Mar;109(3):529–548. doi: 10.1093/genetics/109.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Voelker R. A., Greenleaf A. L., Gyurkovics H., Wisely G. B., Huang S. M., Searles L. L. Frequent Imprecise Excision among Reversions of a P Element-Caused Lethal Mutation in Drosophila. Genetics. 1984 Jun;107(2):279–294. doi: 10.1093/genetics/107.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]