A Comprehensive Study of Genic Variation in Natural Populations of Drosophila melanogaster. III. Variations in Genetic Structure and Their Causes between Drosophila melanogaster and Its Sibling Species Drosophila simulans (original) (raw)

Abstract

The natural populations of Drosophila melanogaster and Drosophila simulans were compared for their genetic structure. A total of 114 gene-protein loci were studied in four mainland (from Europe and Africa) and an island (Seychelle) populations of D. simulans and the results were compared with those obtained on the same set of homologous loci in fifteen worldwide populations of D. melanogaster. The main results are as follows: (1) D. melanogaster shows a significantly higher proportion of loci polymorphic than D. simulans (52% vs. 39%, P<0.05), (2) both species have similar mean heterozygosity and mean number of alleles per locus, (3) the two species share some highly polymorphic loci but they do not share loci that show high geographic differentiation, and (4) D. simulans shows significantly less geographic differentiation than D. melanogaster. The differences in genetic differentiation between the two species are limited to loci located on the X and second chromosomes only; loci on the third chromosome show similar level of geographic differentiation in both species. These two species have previously been shown to differ in their pattern of variation for chromosomal polymorphisms, quantitative and physiological characters, two-dimensional electrophoretic (2DE) proteins, middle repetitive DNA and mitochondrial DNA. Variation in niche-widths and/or genetic "strategies" of adaptation appear to be the main causes of differences in the genetic structure of these two species.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger E. M. A temporal survey of allelic variation in natural and laboratory populations of Drosophila melanogaster. Genetics. 1971 Jan;67(1):121–136. doi: 10.1093/genetics/67.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hamrick J. L., Allard R. W. Microgeographical Variation in Allozyme Frequencies in Avena barbata. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2100–2104. doi: 10.1073/pnas.69.8.2100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Johnson F. M., Schaffer H. E., Gillaspy J. E., Rockwood E. S. Isozyme genotype-environment relationships in natural populations of the harvester ant, Pogonomyrmex barbatus, from Texas. Biochem Genet. 1969 Oct;3(5):429–450. doi: 10.1007/BF00485604. [DOI] [PubMed] [Google Scholar]
  4. Knibb W. R., Oakeshott J. G., Gibson J. B. Chromosome Inversion Polymorphisms in DROSOPHILA MELANOGASTER. I. Latitudinal Clines and Associations between Inversions in Australasian Populations. Genetics. 1981 Aug;98(4):833–847. doi: 10.1093/genetics/98.4.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kojima K., Gillespie J., Toari Y. N. A profile of Drosophila species' enzymes assayed by electrophoresis. I. Number of alleles, heterozygosities, and linkage disequilibrium in glucose-metabolizing systems and some other enzymes. Biochem Genet. 1970 Oct;4(5):627–637. doi: 10.1007/BF00486100. [DOI] [PubMed] [Google Scholar]
  6. McDonald J. F., Ayala F. J. Genetic response to environmental heterogeneity. Nature. 1974 Aug 16;250(467):572–574. doi: 10.1038/250572a0. [DOI] [PubMed] [Google Scholar]
  7. McDonald J., Parsons P. A. Dispersal activities of the sibling species Drosophila melanogaster and Drosophila simulans. Behav Genet. 1973 Sep;3(3):293–301. doi: 10.1007/BF01067606. [DOI] [PubMed] [Google Scholar]
  8. Mettler L. E., Voelker R. A., Mukai T. Inversion Clines in Populations of DROSOPHILA MELANOGASTER. Genetics. 1977 Sep;87(1):169–176. doi: 10.1093/genetics/87.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ohnishi S., Leigh Brown A. J., Voelker R. A., Langley C. H. Estimation of genetic variability in natural populations of Drosophila simulans by two-dimensional and starch gel electrophoresis. Genetics. 1982 Jan;100(1):127–136. doi: 10.1093/genetics/100.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Powell J. R. Genetic polymorphisms in varied environments. Science. 1971 Dec 3;174(4013):1035–1036. doi: 10.1126/science.174.4013.1035. [DOI] [PubMed] [Google Scholar]
  11. Singh R. S., Coulthart M. B. Genic variation in abundant soluble proteins of Drosophila melanogaster and Drosophila pseudoobscura. Genetics. 1982 Nov;102(3):437–453. doi: 10.1093/genetics/102.3.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Singh R. S., Hickey D. A., David J. Genetic Differentiation between Geographically Distant Populations of DROSOPHILA MELANOGASTER. Genetics. 1982 Jun;101(2):235–256. doi: 10.1093/genetics/101.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Stalker H. D. Chromosome studies in wild populations of D. melanogaster. Genetics. 1976 Feb;82(2):323–347. doi: 10.1093/genetics/82.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Steiner W. W., Sung K. C., Paik Y. K. Electrophoretic variability in island populations of Drosophila simulans and Drosophila immigrans. Biochem Genet. 1976 Jun;14(5-6):495–506. doi: 10.1007/BF00486129. [DOI] [PubMed] [Google Scholar]
  15. Sturtevant A H. Genetic Studies on DROSOPHILA SIMULANS. I. Introduction. Hybrids with DROSOPHILA MELANOGASTER. Genetics. 1920 Sep;5(5):488–500. doi: 10.1093/genetics/5.5.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. TANTAWY A. O., MALLAH G. S., TEWFIK H. R. STUDIES ON NATURAL POPULATIONS OF DROSOPHILA. II. HERITABILITY AND RESPONSE TO SELECTION FOR WING LENGTH IN DROSOPHILA MELANOGASTER AND D. SIMULANS AT DIFFERENT TEMPERATURES. Genetics. 1964 Jun;49:935–948. doi: 10.1093/genetics/49.6.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Taylor C. E., Powell J. R. Microgeographic differentiation of chromosomal and enzyme polymorphisms in Drosophila persimilis. Genetics. 1977 Apr;85(4):681–695. doi: 10.1093/genetics/85.4.681. [DOI] [PMC free article] [PubMed] [Google Scholar]