Geographic Distribution and Inheritance of Three Cytoplasmic Incompatibility Types in Drosophila Simulans (original) (raw)
Abstract
Wolbachia-like microorganisms have been implicated in unidirectional cytoplasmic incompatibility between strains of Drosophila simulans. Reduced egg eclosion occurs when females from uninfected strains (type W) are crossed with males from infected strains (type R). Here we characterize a third incompatibility type (type S) which is also correlated with the presence of Wolbachia-like microorganisms. Despite the fact that the symbionts cannot be morphologically distinguished, we observed complete bidirectional incompatibility between R and S strains. This indicates that the determinants of incompatibility are different in the two infected types. S/W incompatibility is unidirectional and similar to R/W incompatibility. A worldwide survey of D. simulans strains showed that type S incompatibility was found only in insular populations which harbor the mitochondrial type SiI. Both W and R types were found among mainland and island populations harboring the worldwide mitochondrial type SiII. Type S incompatibility could be involved in the reinforcement of the geographical isolation of SiI populations.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baba-Aïssa F., Solignac M., Dennebouy N., David J. R. Mitochondrial DNA variability in Drosophila simulans: quasi absence of polymorphism within each of the three cytoplasmic races. Heredity (Edinb) 1988 Dec;61(Pt 3):419–426. doi: 10.1038/hdy.1988.133. [DOI] [PubMed] [Google Scholar]
- Breeuwer J. A., Werren J. H. Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature. 1990 Aug 9;346(6284):558–560. doi: 10.1038/346558a0. [DOI] [PubMed] [Google Scholar]
- Choudhary M., Singh R. S. A Comprehensive Study of Genic Variation in Natural Populations of Drosophila melanogaster. III. Variations in Genetic Structure and Their Causes between Drosophila melanogaster and Its Sibling Species Drosophila simulans. Genetics. 1987 Dec;117(4):697–710. doi: 10.1093/genetics/117.4.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffmann A. A., Turelli M., Harshman L. G. Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. Genetics. 1990 Dec;126(4):933–948. doi: 10.1093/genetics/126.4.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffmann A. A., Turelli M. Unidirectional incompatibility in Drosophila simulans: inheritance, geographic variation and fitness effects. Genetics. 1988 Jun;119(2):435–444. doi: 10.1093/genetics/119.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hyytia P., Capy P., David J. R., Singh R. S. Enzymatic and quantitative variation in European and African populations of Drosophila simulans. Heredity (Edinb) 1985 Apr;54(Pt 2):209–217. doi: 10.1038/hdy.1985.28. [DOI] [PubMed] [Google Scholar]
- O'Neill S. L., Karr T. L. Bidirectional incompatibility between conspecific populations of Drosophila simulans. Nature. 1990 Nov 8;348(6297):178–180. doi: 10.1038/348178a0. [DOI] [PubMed] [Google Scholar]
- Yen J. H., Barr A. R. The etiological agent of cytoplasmic incompatibility in Culex pipiens. J Invertebr Pathol. 1973 Sep;22(2):242–250. doi: 10.1016/0022-2011(73)90141-9. [DOI] [PubMed] [Google Scholar]