Detection of Genetic Interference: Simulation Studies and Mouse Data (original) (raw)

Abstract

Genetic chiasma interference occurs when the occurrence of one crossover (or chiasma) influences the probability of another crossover occurring nearby. We investigated, by simulation studies, the power of three statistical methods to detect interference. Neither the traditional three-locus method nor a multiplicative model approach are very powerful, while a multilocus-feasible map function approach is more powerful, particularly as the number of loci increases. We show that the power to detect interference is quite sensitive to the underlying type of interference. When we tested for interference in two mouse data sets (from chromosomes 1 and 12), we found significant evidence of positive interference.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blank R. D., Campbell G. R., Calabro A., D'Eustachio P. A linkage map of mouse chromosome 12: localization of Igh and effects of sex and interference on recombination. Genetics. 1988 Dec;120(4):1073–1083. doi: 10.1093/genetics/120.4.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Felsenstein J. A mathematically tractable family of genetic mapping functions with different amounts of interference. Genetics. 1979 Apr;91(4):769–775. doi: 10.1093/genetics/91.4.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Goldgar D. E., Fain P. R. Models of multilocus recombination: nonrandomness in chiasma number and crossover positions. Am J Hum Genet. 1988 Jul;43(1):38–45. [PMC free article] [PubMed] [Google Scholar]
  4. Gorlov I. P., Borodin P. M. Raspredelenie khiazm v normal'nom kariotipe myshi. Genetika. 1991 Feb;27(2):247–251. [PubMed] [Google Scholar]
  5. Jagiello G., Fang J. S. Analyses of diplotene chiasma frequencies in mouse oocytes and spermatocytes in relation to ageing and sexual dimorphism. Cytogenet Cell Genet. 1979;23(1-2):53–60. doi: 10.1159/000131302. [DOI] [PubMed] [Google Scholar]
  6. King T. R., Dove W. F., Guénet J. L., Herrmann B. G., Shedlovsky A. Meiotic mapping of murine chromosome 17: the string of loci around l(17)-2Pas. Mamm Genome. 1991;1(1):37–46. doi: 10.1007/BF00350844. [DOI] [PubMed] [Google Scholar]
  7. Kyslíková L., Forejt J. Chiasma frequency in three inbred strains of mice. Folia Biol (Praha) 1972;18(3):216–221. [PubMed] [Google Scholar]
  8. Liberman U., Karlin S. Theoretical models of genetic map functions. Theor Popul Biol. 1984 Jun;25(3):331–346. doi: 10.1016/0040-5809(84)90013-3. [DOI] [PubMed] [Google Scholar]
  9. Liberman U. On chiasma formation point processes having the count location property. J Math Biol. 1984;21(1):1–10. doi: 10.1007/BF00275218. [DOI] [PubMed] [Google Scholar]
  10. Lyon M. F. Distribution of crossing-over in mouse chromosomes. Genet Res. 1976 Dec;28(3):291–299. doi: 10.1017/s0016672300016980. [DOI] [PubMed] [Google Scholar]
  11. Maudlin I., Evans E. P. Chiasma distribution in mouse oocytes during diakinesis. Chromosoma. 1980;80(1):49–56. doi: 10.1007/BF00327565. [DOI] [PubMed] [Google Scholar]
  12. Morton N. E., Andrews V. MAP, an expert system for multiple pairwise linkage analysis. Ann Hum Genet. 1989 Jul;53(Pt 3):263–269. doi: 10.1111/j.1469-1809.1989.tb01793.x. [DOI] [PubMed] [Google Scholar]
  13. Morton N. E., Collins A. Standard maps of chromosome 10. Ann Hum Genet. 1990 Jul;54(Pt 3):235–251. doi: 10.1111/j.1469-1809.1990.tb00381.x. [DOI] [PubMed] [Google Scholar]
  14. Nadeau J. H., Herrmann B., Bucan M., Burkart D., Crosby J. L., Erhart M. A., Kosowsky M., Kraus J. P., Michiels F., Schnattinger A. Genetic maps of mouse chromosome 17 including 12 new anonymous DNA loci and 25 anchor loci. Genomics. 1991 Jan;9(1):78–89. doi: 10.1016/0888-7543(91)90223-2. [DOI] [PubMed] [Google Scholar]
  15. Seldin M. F., Howard T. A., D'Eustachio P. Comparison of linkage maps of mouse chromosome 12 derived from laboratory strain intraspecific and Mus spretus interspecific backcrosses. Genomics. 1989 Jul;5(1):24–28. doi: 10.1016/0888-7543(89)90082-7. [DOI] [PubMed] [Google Scholar]
  16. Shields D. C., Collins A., Buetow K. H., Morton N. E. Error filtration, interference, and the human linkage map. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6501–6505. doi: 10.1073/pnas.88.15.6501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sturt E. A mapping function for human chromosomes. Ann Hum Genet. 1976 Nov;40(2):147–163. doi: 10.1111/j.1469-1809.1976.tb00175.x. [DOI] [PubMed] [Google Scholar]
  18. Säll T., Bengtsson B. O. Apparent negative interference due to variation in recombination frequencies. Genetics. 1989 Aug;122(4):935–942. doi: 10.1093/genetics/122.4.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Terwilliger J. D., Speer M., Ott J. Chromosome-based method for rapid computer simulation in human genetic linkage analysis. Genet Epidemiol. 1993;10(4):217–224. doi: 10.1002/gepi.1370100402. [DOI] [PubMed] [Google Scholar]
  20. Todd J. A., Aitman T. J., Cornall R. J., Ghosh S., Hall J. R., Hearne C. M., Knight A. M., Love J. M., McAleer M. A., Prins J. B. Genetic analysis of autoimmune type 1 diabetes mellitus in mice. Nature. 1991 Jun 13;351(6327):542–547. doi: 10.1038/351542a0. [DOI] [PubMed] [Google Scholar]
  21. Weeks D. E., Lathrop G. M., Ott J. Multipoint mapping under genetic interference. Hum Hered. 1993 Mar-Apr;43(2):86–97. doi: 10.1159/000154123. [DOI] [PubMed] [Google Scholar]
  22. Zhao L. P., Thompson E., Prentice R. Joint estimation of recombination fractions and interference coefficients in multilocus linkage analysis. Am J Hum Genet. 1990 Aug;47(2):255–265. [PMC free article] [PubMed] [Google Scholar]