Temperature-Sensitive Mutations That Cause Stage-Specific Defects in Zebrafish Fin Regeneration (original) (raw)

Abstract

When amputated, the fins of adult zebrafish rapidly regenerate the missing tissue. Fin regeneration proceeds through several stages, including wound healing, establishment of the wound epithelium, recruitment of the blastema from mesenchymal cells underlying the wound epithelium, and differentiation and outgrowth of the regenerate. We screened for temperature-sensitive mutations that affect the regeneration of the fin. Seven mutations were identified, including five that fail to regenerate their fins, one that causes slow growth during regeneration, and one that causes dysmorphic bumps or tumors to develop in the regenerating fin. reg5 mutants fail to regenerate their caudal fins, whereas reg6 mutants develop dysmorphic bumps in their regenerates at the restrictive temperature. Temperature-shift experiments indicate that reg5 and reg6 affect different stages of regeneration. The critical period for reg5 occurs during the early stages of regeneration before or during establishment of the blastema, resulting in defects in subsequent growth of the blastema and failure to differentiate bone-forming cells. The critical period for reg6 occurs after the onset of bone differentiation and during early stages of regenerative outgrowth. Both reg5 and reg6 also show temperature-sensitive defects in embryonic development or in ontogenetic outgrowth of the juvenile fin.

Full Text

The Full Text of this article is available as a PDF (5.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akimenko M. A., Johnson S. L., Westerfield M., Ekker M. Differential induction of four msx homeobox genes during fin development and regeneration in zebrafish. Development. 1995 Feb;121(2):347–357. doi: 10.1242/dev.121.2.347. [DOI] [PubMed] [Google Scholar]
  2. Bartel B., Varshavsky A. Hypersensitivity to heavy water: a new conditional phenotype. Cell. 1988 Mar 25;52(6):935–941. doi: 10.1016/0092-8674(88)90435-7. [DOI] [PubMed] [Google Scholar]
  3. Dev A., Ghosh P., Deka R. C. Acquired tracheo-oesophageal fistula (a case report). J Laryngol Otol. 1988 Apr;102(4):378–379. doi: 10.1017/s0022215100105031. [DOI] [PubMed] [Google Scholar]
  4. EDGAR R. S., LIELAUSIS I. TEMPERATURE-SENSITIVE MUTANTS OF BACTERIOPHAGE T4D: THEIR ISOLATION AND GENETIC CHARACTERIZATION. Genetics. 1964 Apr;49:649–662. doi: 10.1093/genetics/49.4.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eisen J. S., Pike S. H., Debu B. The growth cones of identified motoneurons in embryonic zebrafish select appropriate pathways in the absence of specific cellular interactions. Neuron. 1989 Jan;2(1):1097–1104. doi: 10.1016/0896-6273(89)90234-1. [DOI] [PubMed] [Google Scholar]
  6. GOSS R. J., STAGG M. W. The regeneration of fins and fin rays in Fundulus heteroclitus. J Exp Zool. 1957 Dec;136(3):487–507. doi: 10.1002/jez.1401360306. [DOI] [PubMed] [Google Scholar]
  7. Gill G. W., Frost J. K., Miller K. A. A new formula for a half-oxidized hematoxylin solution that neither overstains nor requires differentiation. Acta Cytol. 1974 Jul-Aug;18(4):300–311. [PubMed] [Google Scholar]
  8. Golden J. W., Riddle D. L. The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature. Dev Biol. 1984 Apr;102(2):368–378. doi: 10.1016/0012-1606(84)90201-x. [DOI] [PubMed] [Google Scholar]
  9. Géraudie J., Singer M. The fish fin regenerate. Monogr Dev Biol. 1992;23:62–72. [PubMed] [Google Scholar]
  10. Hartwell L. H., Weinert T. A. Checkpoints: controls that ensure the order of cell cycle events. Science. 1989 Nov 3;246(4930):629–634. doi: 10.1126/science.2683079. [DOI] [PubMed] [Google Scholar]
  11. Humphrey C. D., Pittman F. E. A simple methylene blue-azure II-basic fuchsin stain for epoxy-embedded tissue sections. Stain Technol. 1974 Jan;49(1):9–14. doi: 10.3109/10520297409116929. [DOI] [PubMed] [Google Scholar]
  12. Johnson S. L., Africa D., Horne S., Postlethwait J. H. Half-tetrad analysis in zebrafish: mapping the ros mutation and the centromere of linkage group I. Genetics. 1995 Apr;139(4):1727–1735. doi: 10.1093/genetics/139.4.1727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kemp N. E., Park J. H. Regeneration of lepidotrichia and actinotrichia in the tailfin of the teleost Tilapia mossambica. Dev Biol. 1970 Jun;22(2):321–342. doi: 10.1016/0012-1606(70)90157-0. [DOI] [PubMed] [Google Scholar]
  14. Moir D., Stewart S. E., Osmond B. C., Botstein D. Cold-sensitive cell-division-cycle mutants of yeast: isolation, properties, and pseudoreversion studies. Genetics. 1982 Apr;100(4):547–563. doi: 10.1093/genetics/100.4.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Oxtoby E., Jowett T. Cloning of the zebrafish krox-20 gene (krx-20) and its expression during hindbrain development. Nucleic Acids Res. 1993 Mar 11;21(5):1087–1095. doi: 10.1093/nar/21.5.1087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pickett F. B., Meeks-Wagner D. R. Seeing double: appreciating genetic redundancy. Plant Cell. 1995 Sep;7(9):1347–1356. doi: 10.1105/tpc.7.9.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Santamaría J. A., Becerra J. Tail fin regeneration in teleosts: cell-extracellular matrix interaction in blastemal differentiation. J Anat. 1991 Jun;176:9–21. [PMC free article] [PubMed] [Google Scholar]
  18. Santamaría J. A., Marí-Beffa M., Becerra J. Interactions of the lepidotrichial matrix components during tail fin regeneration in teleosts. Differentiation. 1992 Apr;49(3):143–150. doi: 10.1111/j.1432-0436.1992.tb00662.x. [DOI] [PubMed] [Google Scholar]
  19. Streisinger G. Attainment of minimal biological variability and measurements of genotoxicity: production of homozygous diploid zebra fish. Natl Cancer Inst Monogr. 1984 May;65:53–58. [PubMed] [Google Scholar]
  20. Streisinger G., Coale F., Taggart C., Walker C., Grunwald D. J. Clonal origins of cells in the pigmented retina of the zebrafish eye. Dev Biol. 1989 Jan;131(1):60–69. doi: 10.1016/s0012-1606(89)80038-7. [DOI] [PubMed] [Google Scholar]
  21. Streisinger G., Walker C., Dower N., Knauber D., Singer F. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature. 1981 May 28;291(5813):293–296. doi: 10.1038/291293a0. [DOI] [PubMed] [Google Scholar]
  22. Suzuki D. T., Piternick L. K., Hayashi S., Tarasoff M., Baillie D., Erasmus U. Temperature-sensitive mutations in Drosophila melanogaster,I. Relative frequencies among gamma-ray and chemically induced sex-linked recessive lethals and semilethals. Proc Natl Acad Sci U S A. 1967 Apr;57(4):907–912. doi: 10.1073/pnas.57.4.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tassava R. A., Goss R. J. Regeneration rate and amputation level in fish fins and lizard tails. Growth. 1966 Mar;30(1):9–21. [PubMed] [Google Scholar]
  24. Thomas J. H., Birnby D. A., Vowels J. J. Evidence for parallel processing of sensory information controlling dauer formation in Caenorhabditis elegans. Genetics. 1993 Aug;134(4):1105–1117. doi: 10.1093/genetics/134.4.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Trevarrow B., Marks D. L., Kimmel C. B. Organization of hindbrain segments in the zebrafish embryo. Neuron. 1990 May;4(5):669–679. doi: 10.1016/0896-6273(90)90194-k. [DOI] [PubMed] [Google Scholar]
  26. Walker C., Streisinger G. Induction of Mutations by gamma-Rays in Pregonial Germ Cells of Zebrafish Embryos. Genetics. 1983 Jan;103(1):125–136. doi: 10.1093/genetics/103.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Weinert T. A., Hartwell L. H. Cell cycle arrest of cdc mutants and specificity of the RAD9 checkpoint. Genetics. 1993 May;134(1):63–80. doi: 10.1093/genetics/134.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Weinert T. A., Hartwell L. H. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science. 1988 Jul 15;241(4863):317–322. doi: 10.1126/science.3291120. [DOI] [PubMed] [Google Scholar]
  29. White J. A., Boffa M. B., Jones B., Petkovich M. A zebrafish retinoic acid receptor expressed in the regenerating caudal fin. Development. 1994 Jul;120(7):1861–1872. doi: 10.1242/dev.120.7.1861. [DOI] [PubMed] [Google Scholar]
  30. Yan Y. L., Hatta K., Riggleman B., Postlethwait J. H. Expression of a type II collagen gene in the zebrafish embryonic axis. Dev Dyn. 1995 Jul;203(3):363–376. doi: 10.1002/aja.1002030308. [DOI] [PubMed] [Google Scholar]