Mapping Quantitative Trait Loci Affecting Life History Traits in the Nematode Caenorhabditis Elegans (original) (raw)
Abstract
We have identified chromosomal regions containing quantitative trait loci (QTLs) specifying life history traits in recombinant-inbred strains of the nematode Caenorhabditis elegans. This approach also allows us to examine epistatic interactions between loci and pleiotropic effects on different traits at specific loci. QTLs for mean life span were identified on chromosomes II (near stP101), IV (stP5) and the X (stP61), and QTLs for fertility were identified on II (maP1), III (stP19) and IV (stP51). The QTLs for mean life span accounted for 90% of the genetic component of variance. The loci for mean fertility accounted for 88% of the genetic component of variance. Additional QTLs for temperature-sensitive fertility [II (stP36) and V (stP6)] and internal hatching [IV (stP5)] were also mapped in these crosses. We found evidence for epistatic effects on mean life span between maP1 and bP1 (V), and for epistatic effects on mean fertility between stP36 and stP6, between stP98 (II) and stP192 (V), between maP1 and stP127 (III), between maP1 and stP103 (X), and between stP5 and stP6. Negatively correlated, pleiotropic effects on mean life span and internal hatching were found linked to stP5.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barstead R. J., Kleiman L., Waterston R. H. Cloning, sequencing, and mapping of an alpha-actinin gene from the nematode Caenorhabditis elegans. Cell Motil Cytoskeleton. 1991;20(1):69–78. doi: 10.1002/cm.970200108. [DOI] [PubMed] [Google Scholar]
- Barton N. H. Pleiotropic models of quantitative variation. Genetics. 1990 Mar;124(3):773–782. doi: 10.1093/genetics/124.3.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barton N. H., Turelli M. Evolutionary quantitative genetics: how little do we know? Annu Rev Genet. 1989;23:337–370. doi: 10.1146/annurev.ge.23.120189.002005. [DOI] [PubMed] [Google Scholar]
- Belknap J. K. Empirical estimates of Bonferroni corrections for use in chromosome mapping studies with the BXD recombinant inbred strains. Behav Genet. 1992 Nov;22(6):677–684. doi: 10.1007/BF01066638. [DOI] [PubMed] [Google Scholar]
- Bradshaw H. D., Jr, Stettler R. F. Molecular genetics of growth and development in populus. IV. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree. Genetics. 1995 Feb;139(2):963–973. doi: 10.1093/genetics/139.2.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brooks A., Johnson T. E. Genetic specification of life span and self-fertility in recombinant-inbred strains of Caenorhabditis elegans. Heredity (Edinb) 1991 Aug;67(Pt 1):19–28. doi: 10.1038/hdy.1991.60. [DOI] [PubMed] [Google Scholar]
- Emmons S. W., Yesner L. High-frequency excision of transposable element Tc 1 in the nematode Caenorhabditis elegans is limited to somatic cells. Cell. 1984 Mar;36(3):599–605. doi: 10.1016/0092-8674(84)90339-8. [DOI] [PubMed] [Google Scholar]
- Emmons S. W., Yesner L., Ruan K. S., Katzenberg D. Evidence for a transposon in Caenorhabditis elegans. Cell. 1983 Jan;32(1):55–65. doi: 10.1016/0092-8674(83)90496-8. [DOI] [PubMed] [Google Scholar]
- Friedman D. B., Johnson T. E. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics. 1988 Jan;118(1):75–86. doi: 10.1093/genetics/118.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grove W. M., Andreasen N. C. Simultaneous tests of many hypotheses in exploratory research. J Nerv Ment Dis. 1982 Jan;170(1):3–8. doi: 10.1097/00005053-198201000-00002. [DOI] [PubMed] [Google Scholar]
- Haldane J B, Waddington C H. Inbreeding and Linkage. Genetics. 1931 Jul;16(4):357–374. doi: 10.1093/genetics/16.4.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hegmann J. P., Possidente B. Estimating genetic correlations from inbred strains. Behav Genet. 1981 Mar;11(2):103–114. doi: 10.1007/BF01065621. [DOI] [PubMed] [Google Scholar]
- Houle D., Hughes K. A., Hoffmaster D. K., Ihara J., Assimacopoulos S., Canada D., Charlesworth B. The effects of spontaneous mutation on quantitative traits. I. Variances and covariances of life history traits. Genetics. 1994 Nov;138(3):773–785. doi: 10.1093/genetics/138.3.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishii N., Suzuki N., Hartman P. S., Suzuki K. The effects of temperature on the longevity of a radiation-sensitive mutant rad-8 of the nematode Caenorhabditis elegans. J Gerontol. 1994 May;49(3):B117–B120. doi: 10.1093/geronj/49.3.b117. [DOI] [PubMed] [Google Scholar]
- Johnson T. E. Aging can be genetically dissected into component processes using long-lived lines of Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3777–3781. doi: 10.1073/pnas.84.11.3777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson T. E., Hutchinson E. W. Absence of strong heterosis for life span and other life history traits in Caenorhabditis elegans. Genetics. 1993 Jun;134(2):465–474. doi: 10.1093/genetics/134.2.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson T. E., Tedesco P. M., Lithgow G. J. Comparing mutants, selective breeding, and transgenics in the dissection of aging processes of Caenorhabditis elegans. Genetica. 1993;91(1-3):65–77. doi: 10.1007/BF01435988. [DOI] [PubMed] [Google Scholar]
- Johnson T. E., Wood W. B. Genetic analysis of life-span in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6603–6607. doi: 10.1073/pnas.79.21.6603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kenyon C., Chang J., Gensch E., Rudner A., Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature. 1993 Dec 2;366(6454):461–464. doi: 10.1038/366461a0. [DOI] [PubMed] [Google Scholar]
- Kondrashov A. S., Turelli M. Deleterious mutations, apparent stabilizing selection and the maintenance of quantitative variation. Genetics. 1992 Oct;132(2):603–618. doi: 10.1093/genetics/132.2.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larsen P. L. Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8905–8909. doi: 10.1073/pnas.90.19.8905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larsen P. L., Albert P. S., Riddle D. L. Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics. 1995 Apr;139(4):1567–1583. doi: 10.1093/genetics/139.4.1567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lithgow G. J., White T. M., Hinerfeld D. A., Johnson T. E. Thermotolerance of a long-lived mutant of Caenorhabditis elegans. J Gerontol. 1994 Nov;49(6):B270–B276. doi: 10.1093/geronj/49.6.b270. [DOI] [PubMed] [Google Scholar]
- Lithgow G. J., White T. M., Melov S., Johnson T. E. Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7540–7544. doi: 10.1073/pnas.92.16.7540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Partridge L., Barton N. H. Optimality, mutation and the evolution of ageing. Nature. 1993 Mar 25;362(6418):305–311. doi: 10.1038/362305a0. [DOI] [PubMed] [Google Scholar]
- Rose A. M., Harris L. J., Mawji N. R., Morris W. J. Tc1(Hin): a form of the transposable element Tc1 in Caenorhabditis elegans. Can J Biochem Cell Biol. 1985 Jul;63(7):752–756. doi: 10.1139/o85-094. [DOI] [PubMed] [Google Scholar]
- Rose M. R., Charlesworth B. Genetics of life history in Drosophila melanogaster. I. Sib analysis of adult females. Genetics. 1981 Jan;97(1):173–186. doi: 10.1093/genetics/97.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rose M. R., Charlesworth B. Genetics of life history in Drosophila melanogaster. II. Exploratory selection experiments. Genetics. 1981 Jan;97(1):187–196. doi: 10.1093/genetics/97.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenzweig B., Liao L. W., Hirsh D. Sequence of the C. elegans transposable element Tc1. Nucleic Acids Res. 1983 Jun 25;11(12):4201–4209. doi: 10.1093/nar/11.12.4201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vanfleteren J. R. Oxidative stress and ageing in Caenorhabditis elegans. Biochem J. 1993 Jun 1;292(Pt 2):605–608. doi: 10.1042/bj2920605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wagner A., Wagner G. P., Similion P. Epistasis can facilitate the evolution of reproductive isolation by peak shifts: a two-locus two-allele model. Genetics. 1994 Oct;138(2):533–545. doi: 10.1093/genetics/138.2.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams B. D., Schrank B., Huynh C., Shownkeen R., Waterston R. H. A genetic mapping system in Caenorhabditis elegans based on polymorphic sequence-tagged sites. Genetics. 1992 Jul;131(3):609–624. doi: 10.1093/genetics/131.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong A., Boutis P., Hekimi S. Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing. Genetics. 1995 Mar;139(3):1247–1259. doi: 10.1093/genetics/139.3.1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wood W. B., Hecht R., Carr S., Vanderslice R., Wolf N., Hirsh D. Parental effects and phenotypic characterization of mutations that affect early development in Caenorhabditis elegans. Dev Biol. 1980 Feb;74(2):446–469. doi: 10.1016/0012-1606(80)90445-5. [DOI] [PubMed] [Google Scholar]
- Wright S. Evolution in Mendelian Populations. Genetics. 1931 Mar;16(2):97–159. doi: 10.1093/genetics/16.2.97. [DOI] [PMC free article] [PubMed] [Google Scholar]