Cloning of the Drosophila Melanogaster Meiotic Recombination Gene Mei-218: A Genetic and Molecular Analysis of Interval 15e (original) (raw)
Abstract
The mei-218 gene product is required for both meiotic crossing over and for the production of recombination nodules, suggesting that these organelles are required for meiotic exchange. In this study the null phenotype of mei-218 was defined through the analysis of three preexisting and five new alleles. Consistent with previous studies, in homozygous mei-218 mutants meiotic crossing over is reduced to <10% of normal levels. A molecular analysis of mei-218 was initiated with the isolation and mapping of lethal mutations and genome rearrangements in the region containing mei-218, polytene interval 15E on the X chromosome. This high resolution genetic map was aligned with a physical map constructed from cosmid and P1 clones by genetically mapping restriction fragment length polymorphisms and localizing rearrangement breakpoints. Within a region of 65 kb, we have identified seven transcription units, including mei-218 and the Minute(1) 15D gene, which encodes ribosomal protein S5. The mei-218 mutant phenotype has been rescued by germline transformation with both a genomic fragment and a cDNA under the control of the hsp83 promoter. The mei-218 gene is predicted to produce an 1186-amino acid protein that has no significant similarities to any known proteins.
Full Text
The Full Text of this article is available as a PDF (4.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- Andersson S., Saebøe-Larssen S., Lambertsson A., Merriam J., Jacobs-Lorena M. A Drosophila third chromosome Minute locus encodes a ribosomal protein. Genetics. 1994 Jun;137(2):513–520. doi: 10.1093/genetics/137.2.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker B. S., Carpenter A. T. Genetic analysis of sex chromosomal meiotic mutants in Drosophilia melanogaster. Genetics. 1972 Jun;71(2):255–286. doi: 10.1093/genetics/71.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker B. S., Carpenter A. T., Ripoll P. The Utilization during Mitotic Cell Division of Loci Controlling Meiotic Recombination and Disjunction in DROSOPHILA MELANOGASTER. Genetics. 1978 Nov;90(3):531–578. doi: 10.1093/genetics/90.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burns D. K., Stark B. C., Macklin M. D., Chooi W. Y. Isolation and characterization of cloned DNA sequences containing ribosomal protein genes of Drosophila melanogaster. Mol Cell Biol. 1984 Dec;4(12):2643–2652. doi: 10.1128/mcb.4.12.2643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carpenter A. T. Electron microscopy of meiosis in Drosophila melanogaster females. I. Structure, arrangement, and temporal change of the synaptonemal complex in wild-type. Chromosoma. 1975;51(2):157–182. doi: 10.1007/BF00319833. [DOI] [PubMed] [Google Scholar]
- Carpenter A. T. Mismatch repair, gene conversion, and crossing-over in two recombination-defective mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5961–5965. doi: 10.1073/pnas.79.19.5961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carpenter A. T. Recombination nodules and synaptonemal complex in recombination-defective females of Drosophila melanogaster. Chromosoma. 1979;75(3):259–292. doi: 10.1007/BF00293472. [DOI] [PubMed] [Google Scholar]
- Carpenter A. T., Sandler L. On recombination-defective meiotic mutants in Drosophila melanogaster. Genetics. 1974 Mar;76(3):453–475. doi: 10.1093/genetics/76.3.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carpenter A. T. Synaptonemal complex and recombination nodules in wild-type Drosophila melanogaster females. Genetics. 1979 Jun;92(2):511–541. doi: 10.1093/genetics/92.2.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ding D., Parkhurst S. M., Halsell S. R., Lipshitz H. D. Dynamic Hsp83 RNA localization during Drosophila oogenesis and embryogenesis. Mol Cell Biol. 1993 Jun;13(6):3773–3781. doi: 10.1128/mcb.13.6.3773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eberl D. F., Perkins L. A., Engelstein M., Hilliker A. J., Perrimon N. Genetic and developmental analysis of polytene section 17 of the X chromosome of Drosophila melanogaster. Genetics. 1992 Mar;130(3):569–583. doi: 10.1093/genetics/130.3.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferrus A. Parameters of mitotic recombination in minute mutants of Drosophila melanogaster. Genetics. 1975 Apr;79(4):589–599. doi: 10.1093/genetics/79.4.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frigerio J. M., Dagorn J. C., Iovanna J. L. Cloning, sequencing and expression of the L5, L21, L27a, L28, S5, S9, S10 and S29 human ribosomal protein mRNAs. Biochim Biophys Acta. 1995 May 17;1262(1):64–68. doi: 10.1016/0167-4781(95)00045-i. [DOI] [PubMed] [Google Scholar]
- Ganetzky B. Genetic studies of membrane excitability in Drosophila: lethal interaction between two temperature-sensitive paralytic mutations. Genetics. 1984 Dec;108(4):897–911. doi: 10.1093/genetics/108.4.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ganetzky B., Wu C. F. Indirect Suppression Involving Behavioral Mutants with Altered Nerve Excitability in DROSOPHILA MELANOGASTER. Genetics. 1982 Apr;100(4):597–614. doi: 10.1093/genetics/100.4.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green M. M. mus(3)312D1, A mutagen sensitive mutant with profound effects on female meiosis in Drosophila melanogaster. Chromosoma. 1981;82(2):259–266. doi: 10.1007/BF00286110. [DOI] [PubMed] [Google Scholar]
- Higashijima S., Kojima T., Michiue T., Ishimaru S., Emori Y., Saigo K. Dual Bar homeo box genes of Drosophila required in two photoreceptor cells, R1 and R6, and primary pigment cells for normal eye development. Genes Dev. 1992 Jan;6(1):50–60. doi: 10.1101/gad.6.1.50. [DOI] [PubMed] [Google Scholar]
- Kafatos F. C., Louis C., Savakis C., Glover D. M., Ashburner M., Link A. J., Sidén-Kiamos I., Saunders R. D. Integrated maps of the Drosophila genome: progress and prospects. Trends Genet. 1991 May;7(5):155–161. doi: 10.1016/0168-9525(91)90379-5. [DOI] [PubMed] [Google Scholar]
- Kongsuwan K., Yu Q., Vincent A., Frisardi M. C., Rosbash M., Lengyel J. A., Merriam J. A Drosophila Minute gene encodes a ribosomal protein. Nature. 1985 Oct 10;317(6037):555–558. doi: 10.1038/317555a0. [DOI] [PubMed] [Google Scholar]
- Kuwano Y., Olvera J., Wool I. G. The primary structure of rat ribosomal protein S5. A ribosomal protein present in the rat genome in a single copy. J Biol Chem. 1992 Dec 15;267(35):25304–25308. [PubMed] [Google Scholar]
- Levi L., Hanukoglu I., Raikhinstein M., Kohen F., Koch Y. Cloning of LL5, a novel protein encoding cDNA from a rat pituitary library. Biochim Biophys Acta. 1993 Nov 16;1216(2):342–344. doi: 10.1016/0167-4781(93)90171-9. [DOI] [PubMed] [Google Scholar]
- Roche S. E., Schiff M., Rio D. C. P-element repressor autoregulation involves germ-line transcriptional repression and reduction of third intron splicing. Genes Dev. 1995 May 15;9(10):1278–1288. doi: 10.1101/gad.9.10.1278. [DOI] [PubMed] [Google Scholar]
- Schultz J. The Minute Reaction in the Development of DROSOPHILA MELANOGASTER. Genetics. 1929 Jul;14(4):366–419. doi: 10.1093/genetics/14.4.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smoller D. A., Petrov D., Hartl D. L. Characterization of bacteriophage P1 library containing inserts of Drosophila DNA of 75-100 kilobase pairs. Chromosoma. 1991 Sep;100(8):487–494. doi: 10.1007/BF00352199. [DOI] [PubMed] [Google Scholar]
- Stanewsky R., Rendahl K. G., Dill M., Saumweber H. Genetic and molecular analysis of the X chromosomal region 14B17-14C4 in Drosophila melanogaster: loss of function in NONA, a nuclear protein common to many cell types, results in specific physiological and behavioral defects. Genetics. 1993 Oct;135(2):419–442. doi: 10.1093/genetics/135.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steller H., Fischbach K. F., Rubin G. M. Disconnected: a locus required for neuronal pathway formation in the visual system of Drosophila. Cell. 1987 Sep 25;50(7):1139–1153. doi: 10.1016/0092-8674(87)90180-2. [DOI] [PubMed] [Google Scholar]
- Stroumbakis N. D., Li Z., Tolias P. P. RNA- and single-stranded DNA-binding (SSB) proteins expressed during Drosophila melanogaster oogenesis: a homolog of bacterial and eukaryotic mitochondrial SSBs. Gene. 1994 Jun 10;143(2):171–177. doi: 10.1016/0378-1119(94)90093-0. [DOI] [PubMed] [Google Scholar]
- Sutton E. Bar Eye in Drosophila Melanogaster: A Cytological Analysis of Some Mutations and Reverse Mutations. Genetics. 1943 Mar;28(2):97–107. doi: 10.1093/genetics/28.2.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zimmerman J. L., Petri W., Meselson M. Accumulation of a specific subset of D. melanogaster heat shock mRNAs in normal development without heat shock. Cell. 1983 Apr;32(4):1161–1170. doi: 10.1016/0092-8674(83)90299-4. [DOI] [PubMed] [Google Scholar]