Distinct Requirements for Somatic and Germline Expression of a Generally Expressed Caernorhabditis Elegans Gene (original) (raw)

Abstract

In screening for embryonic-lethal mutations in Caenorhabditis elegans, we defined an essential gene (let-858) that encodes a nuclear protein rich in acidic and basic residues. We have named this product nucampholin. Closely homologous sequences in yeast, plants, and mammals demonstrate strong evolutionary conservation in eukaryotes. Nucampholin resides in all nuclei of C. elegans and is essential in early development and in differentiating tissue. Antisense-mediated depletion of LET-858 activity in early embryos causes a lethal phenotype similar to characterized treatments blocking embryonic gene expression. Using transgene-rescue, we demonstrated the additional requirement for let-858 in the larval germline. The broad requirements allowed investigation of soma-germline differences in gene expression. When introduced into standard transgene arrays, let-858 (like many other C. elegans genes) functions well in soma but poorly in germline. We observed incremental silencing of simple let-858 arrays in the first few generations following transformation and hypothesized that silencing might reflect recognition of arrays as repetitive or heterochromatin-like. To give the transgene a more physiological context, we included an excess of random genomic fragments with the injected DNA. The resulting transgenes show robust expression in both germline and soma. Our results suggest the possibility of concerted mechanisms for silencing unwanted germline expression of repetitive sequences.

Full Text

The Full Text of this article is available as a PDF (6.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Austin J., Kimble J. glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell. 1987 Nov 20;51(4):589–599. doi: 10.1016/0092-8674(87)90128-0. [DOI] [PubMed] [Google Scholar]
  3. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chalfie M., Tu Y., Euskirchen G., Ward W. W., Prasher D. C. Green fluorescent protein as a marker for gene expression. Science. 1994 Feb 11;263(5148):802–805. doi: 10.1126/science.8303295. [DOI] [PubMed] [Google Scholar]
  5. Dorer D. R., Henikoff S. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell. 1994 Jul 1;77(7):993–1002. doi: 10.1016/0092-8674(94)90439-1. [DOI] [PubMed] [Google Scholar]
  6. Emmons S. W., Yesner L. High-frequency excision of transposable element Tc 1 in the nematode Caenorhabditis elegans is limited to somatic cells. Cell. 1984 Mar;36(3):599–605. doi: 10.1016/0092-8674(84)90339-8. [DOI] [PubMed] [Google Scholar]
  7. Ferguson K. C., Heid P. J., Rothman J. H. The SL1 trans-spliced leader RNA performs an essential embryonic function in Caenorhabditis elegans that can also be supplied by SL2 RNA. Genes Dev. 1996 Jun 15;10(12):1543–1556. doi: 10.1101/gad.10.12.1543. [DOI] [PubMed] [Google Scholar]
  8. Fire A., Albertson D., Harrison S. W., Moerman D. G. Production of antisense RNA leads to effective and specific inhibition of gene expression in C. elegans muscle. Development. 1991 Oct;113(2):503–514. doi: 10.1242/dev.113.2.503. [DOI] [PubMed] [Google Scholar]
  9. Fire A., Harrison S. W., Dixon D. A modular set of lacZ fusion vectors for studying gene expression in Caenorhabditis elegans. Gene. 1990 Sep 14;93(2):189–198. doi: 10.1016/0378-1119(90)90224-f. [DOI] [PubMed] [Google Scholar]
  10. Guedes S., Priess J. R. The C. elegans MEX-1 protein is present in germline blastomeres and is a P granule component. Development. 1997 Feb;124(3):731–739. doi: 10.1242/dev.124.3.731. [DOI] [PubMed] [Google Scholar]
  11. Guo S., Kemphues K. J. A non-muscle myosin required for embryonic polarity in Caenorhabditis elegans. Nature. 1996 Aug 1;382(6590):455–458. doi: 10.1038/382455a0. [DOI] [PubMed] [Google Scholar]
  12. Guo S., Kemphues K. J. Molecular genetics of asymmetric cleavage in the early Caenorhabditis elegans embryo. Curr Opin Genet Dev. 1996 Aug;6(4):408–415. doi: 10.1016/s0959-437x(96)80061-x. [DOI] [PubMed] [Google Scholar]
  13. Guo S., Kemphues K. J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell. 1995 May 19;81(4):611–620. doi: 10.1016/0092-8674(95)90082-9. [DOI] [PubMed] [Google Scholar]
  14. Herman R. K. Crossover suppressors and balanced recessive lethals in Caenorhabditis elegans. Genetics. 1978 Jan;88(1):49–65. doi: 10.1093/genetics/88.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hope I. A. 'Promoter trapping' in Caenorhabditis elegans. Development. 1991 Oct;113(2):399–408. doi: 10.1242/dev.113.2.399. [DOI] [PubMed] [Google Scholar]
  16. Kimble J., Hirsh D. The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev Biol. 1979 Jun;70(2):396–417. doi: 10.1016/0012-1606(79)90035-6. [DOI] [PubMed] [Google Scholar]
  17. Koerner T. J., Hill J. E., Myers A. M., Tzagoloff A. High-expression vectors with multiple cloning sites for construction of trpE fusion genes: pATH vectors. Methods Enzymol. 1991;194:477–490. doi: 10.1016/0076-6879(91)94036-c. [DOI] [PubMed] [Google Scholar]
  18. Krause M., Harrison S. W., Xu S. Q., Chen L., Fire A. Elements regulating cell- and stage-specific expression of the C. elegans MyoD family homolog hlh-1. Dev Biol. 1994 Nov;166(1):133–148. doi: 10.1006/dbio.1994.1302. [DOI] [PubMed] [Google Scholar]
  19. Lieb J. D., Capowski E. E., Meneely P., Meyer B. J. DPY-26, a link between dosage compensation and meiotic chromosome segregation in the nematode. Science. 1996 Dec 6;274(5293):1732–1736. doi: 10.1126/science.274.5293.1732. [DOI] [PubMed] [Google Scholar]
  20. Martin D. I., Whitelaw E. The vagaries of variegating transgenes. Bioessays. 1996 Nov;18(11):919–923. doi: 10.1002/bies.950181111. [DOI] [PubMed] [Google Scholar]
  21. Mello C. C., Kramer J. M., Stinchcomb D., Ambros V. Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 1991 Dec;10(12):3959–3970. doi: 10.1002/j.1460-2075.1991.tb04966.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mello C. C., Schubert C., Draper B., Zhang W., Lobel R., Priess J. R. The PIE-1 protein and germline specification in C. elegans embryos. Nature. 1996 Aug 22;382(6593):710–712. doi: 10.1038/382710a0. [DOI] [PubMed] [Google Scholar]
  23. Mello C., Fire A. DNA transformation. Methods Cell Biol. 1995;48:451–482. [PubMed] [Google Scholar]
  24. Miller D. M., Shakes D. C. Immunofluorescence microscopy. Methods Cell Biol. 1995;48:365–394. [PubMed] [Google Scholar]
  25. Müller F., Bernard V., Tobler H. Chromatin diminution in nematodes. Bioessays. 1996 Feb;18(2):133–138. doi: 10.1002/bies.950180209. [DOI] [PubMed] [Google Scholar]
  26. Okkema P. G., Harrison S. W., Plunger V., Aryana A., Fire A. Sequence requirements for myosin gene expression and regulation in Caenorhabditis elegans. Genetics. 1993 Oct;135(2):385–404. doi: 10.1093/genetics/135.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Powell-Coffman J. A., Knight J., Wood W. B. Onset of C. elegans gastrulation is blocked by inhibition of embryonic transcription with an RNA polymerase antisense RNA. Dev Biol. 1996 Sep 15;178(2):472–483. doi: 10.1006/dbio.1996.0232. [DOI] [PubMed] [Google Scholar]
  28. Priess J. R., Hirsh D. I. Caenorhabditis elegans morphogenesis: the role of the cytoskeleton in elongation of the embryo. Dev Biol. 1986 Sep;117(1):156–173. doi: 10.1016/0012-1606(86)90358-1. [DOI] [PubMed] [Google Scholar]
  29. Sabl J. F., Henikoff S. Copy number and orientation determine the susceptibility of a gene to silencing by nearby heterochromatin in Drosophila. Genetics. 1996 Feb;142(2):447–458. doi: 10.1093/genetics/142.2.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Seydoux G., Fire A. Soma-germline asymmetry in the distributions of embryonic RNAs in Caenorhabditis elegans. Development. 1994 Oct;120(10):2823–2834. doi: 10.1242/dev.120.10.2823. [DOI] [PubMed] [Google Scholar]
  31. Seydoux G., Fire A. Whole-mount in situ hybridization for the detection of RNA in Caenorhabditis elegans embryos. Methods Cell Biol. 1995;48:323–337. doi: 10.1016/s0091-679x(08)61394-1. [DOI] [PubMed] [Google Scholar]
  32. Seydoux G., Mello C. C., Pettitt J., Wood W. B., Priess J. R., Fire A. Repression of gene expression in the embryonic germ lineage of C. elegans. Nature. 1996 Aug 22;382(6593):713–716. doi: 10.1038/382713a0. [DOI] [PubMed] [Google Scholar]
  33. Sigurdson D. C., Spanier G. J., Herman R. K. Caenorhabditis elegans deficiency mapping. Genetics. 1984 Oct;108(2):331–345. doi: 10.1093/genetics/108.2.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stinchcomb D. T., Shaw J. E., Carr S. H., Hirsh D. Extrachromosomal DNA transformation of Caenorhabditis elegans. Mol Cell Biol. 1985 Dec;5(12):3484–3496. doi: 10.1128/mcb.5.12.3484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sulston J. E., Schierenberg E., White J. G., Thomson J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol. 1983 Nov;100(1):64–119. doi: 10.1016/0012-1606(83)90201-4. [DOI] [PubMed] [Google Scholar]
  36. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]