An Approximate Model of Polygenic Inheritance (original) (raw)
Abstract
The finite polygenic model approximates polygenic inheritance by postulating that a quantitative trait is determined by n independent, additive loci. The 3(n) possible genotypes for each person in this model limit its applicability. CANNINGS, THOMPSON, and SKOLNICK suggested a simplified, nongenetic version of the model involving only 2n + 1 genotypes per person. This article shows that this hypergeometric polygenic model also approximates polygenic inheritance well. In particular, for noninbred pedigrees, trait means, variances, covariances, and marginal distributions match those of the ordinary finite polygenic model. Furthermore as n -> &, the trait values within a pedigree collectively tend toward multivariate normality. The implications of these results for likelihood evaluation under the polygenic threshold and mixed models of inheritance are discussed. Finally, a simple numerical example illustrates the application of the hypergeometric polygenic model to risk prediction under the polygenic threshold model.
Full Text
The Full Text of this article is available as a PDF (707.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Elston R. C., George V. T., Severtson F. The Elston-Stewart algorithm for continuous genotypes and environmental factors. Hum Hered. 1992;42(1):16–27. doi: 10.1159/000154043. [DOI] [PubMed] [Google Scholar]
- Elston R. C., Stewart J. A general model for the genetic analysis of pedigree data. Hum Hered. 1971;21(6):523–542. doi: 10.1159/000152448. [DOI] [PubMed] [Google Scholar]
- Fu Y. X., Li W. H. Statistical tests of neutrality of mutations. Genetics. 1993 Mar;133(3):693–709. doi: 10.1093/genetics/133.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffiths R. C. Lines of descent in the diffusion approximation of neutral Wright-Fisher models. Theor Popul Biol. 1980 Feb;17(1):37–50. doi: 10.1016/0040-5809(80)90013-1. [DOI] [PubMed] [Google Scholar]
- Hasstedt S. J. A mixed-model likelihood approximation on large pedigrees. Comput Biomed Res. 1982 Jun;15(3):295–307. doi: 10.1016/0010-4809(82)90064-7. [DOI] [PubMed] [Google Scholar]
- Hudson R. R., Bailey K., Skarecky D., Kwiatowski J., Ayala F. J. Evidence for positive selection in the superoxide dismutase (Sod) region of Drosophila melanogaster. Genetics. 1994 Apr;136(4):1329–1340. doi: 10.1093/genetics/136.4.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hudson R. R., Kaplan N. L. Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics. 1985 Sep;111(1):147–164. doi: 10.1093/genetics/111.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KIMURA M., CROW J. F. THE NUMBER OF ALLELES THAT CAN BE MAINTAINED IN A FINITE POPULATION. Genetics. 1964 Apr;49:725–738. doi: 10.1093/genetics/49.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura M. The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics. 1969 Apr;61(4):893–903. doi: 10.1093/genetics/61.4.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lange K., Boehnke M. Extensions to pedigree analysis. IV. Covariance components models for multivariate traits. Am J Med Genet. 1983 Mar;14(3):513–524. doi: 10.1002/ajmg.1320140315. [DOI] [PubMed] [Google Scholar]
- Lange K., Matthysse S. Simulation of pedigree genotypes by random walks. Am J Hum Genet. 1989 Dec;45(6):959–970. [PMC free article] [PubMed] [Google Scholar]
- Lange K., Sobel E. A random walk method for computing genetic location scores. Am J Hum Genet. 1991 Dec;49(6):1320–1334. [PMC free article] [PubMed] [Google Scholar]
- Morton N. E., MacLean C. J. Analysis of family resemblance. 3. Complex segregation of quantitative traits. Am J Hum Genet. 1974 Jul;26(4):489–503. [PMC free article] [PubMed] [Google Scholar]
- Rand D. M., Kann L. M. Excess amino acid polymorphism in mitochondrial DNA: contrasts among genes from Drosophila, mice, and humans. Mol Biol Evol. 1996 Jul;13(6):735–748. doi: 10.1093/oxfordjournals.molbev.a025634. [DOI] [PubMed] [Google Scholar]
- Slatkin M. Gene genealogies within mutant allelic classes. Genetics. 1996 May;143(1):579–587. doi: 10.1093/genetics/143.1.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sobel E., Lange K. Metropolis sampling in pedigree analysis. Stat Methods Med Res. 1993;2(3):263–282. doi: 10.1177/096228029300200305. [DOI] [PubMed] [Google Scholar]
- Stricker C., Fernando R. L., Elston R. C. Linkage analysis with an alternative formulation for the mixed model of inheritance: the finite polygenic mixed model. Genetics. 1995 Dec;141(4):1651–1656. doi: 10.1093/genetics/141.4.1651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tajima F. Evolutionary relationship of DNA sequences in finite populations. Genetics. 1983 Oct;105(2):437–460. doi: 10.1093/genetics/105.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson E. A., Guo S. W. Evaluation of likelihood ratios for complex genetic models. IMA J Math Appl Med Biol. 1991;8(3):149–169. doi: 10.1093/imammb/8.3.149. [DOI] [PubMed] [Google Scholar]
- Watterson G. A., Guess H. A. Is the most frequent allele the oldest? Theor Popul Biol. 1977 Apr;11(2):141–160. doi: 10.1016/0040-5809(77)90023-5. [DOI] [PubMed] [Google Scholar]