Analysis of Pleiotropism at the Dominant White-Spotting (W) Locus of the House Mouse: A Description of Ten New W Alleles (original) (raw)
Abstract
Characterization of the pleiotropic effects of ten new putative W locus mutations, nine co-isogenic and one highly congenic with the C57BL/6J strain, reveals a wide variety of influences upon pigmentation, blood formation and gametogenesis. None of the putative alleles, each of which is closely linked to Ph, a gene 0.1 cM from W, gave evidence of complementation with W39, a new allele previously shown to be allelic to Wv. All W*/W39 genotypes resulted in black-eyed-white anemics with reduced gametogenic activity.1 Homozygotes for seven of these mutations are lethal during perinatal life; anemic embryos have been identified in litters produced by intercross matings involving each of these alleles.—Phenotypes of mice of several mutant genotypes provide exceptions to the frequent observation that a double dose of dominant W alleles (e.g., W/Wv or W/W) results in defects of corresponding severity in each of the three affected tissues. One viable homozygote has little or no defect in blood formation, and another appears to have normal fertility. The phenotypes of these homozygotes support the conclusion that the three tissue defects are not dependent on each other for their appearance and probably do not result from a single physiological disturbance during the development of the embryo.—Although homozygosity for members of this series results in a wide range of phenotypes, the absence of complementation of any allele with W39, the close proximity of each mutant to Ph, and the fact that all alleles produce detectable (though sometimes marginal) defects in the same tissues affected by W and Wv, support the hypothesis that each new mutant gene is a W allele.
Full Text
The Full Text of this article is available as a PDF (2.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- LAWSON F. A., RUSSELL E. S., SMITH L. J. Implantation of normal blood-forming tissue in radiated genetically anemic hosts. Science. 1956 Nov 30;124(3231):1076–1077. doi: 10.1126/science.124.3231.1076. [DOI] [PubMed] [Google Scholar]
- MINTZ B., RUSSELL E. S. Gene-induced embryological modifications of primordial germ cells in the mouse. J Exp Zool. 1957 Mar;134(2):207–237. doi: 10.1002/jez.1401340202. [DOI] [PubMed] [Google Scholar]
- RUSSELL E. S. Analysis of pleiotropism at the W-locus in the mouse; relationship between the effects of W and Wv substitution on hair pigmentation and on erythrocytes. Genetics. 1949 Nov;34(6):708–723. doi: 10.1093/genetics/34.6.708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Russel E. S., Thompson M. W., McFarland E. Analysis of effects of W and f genic substitutions on fetal mouse hematology. Genetics. 1968 Feb;58(2):259–270. doi: 10.1093/genetics/58.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Russell E. S., McFarland E. C. Analysis of pleiotropic effects of W and f genic substitutions in the mouse. Genetics. 1966 May;53(5):949–959. doi: 10.1093/genetics/53.5.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SIDMAN R. L., GREEN M. C. RETINAL DEGENERATION IN THE MOUSE: LOCATION OF THE RD LOCUS IN LINKAGE GROUP XVII. J Hered. 1965 Jan-Feb;56:23–29. doi: 10.1093/oxfordjournals.jhered.a107364. [DOI] [PubMed] [Google Scholar]
- Schlager G., Dickie M. M. Spontaneous mutations and mutation rates in the house mouse. Genetics. 1967 Oct;57(2):319–330. doi: 10.1093/genetics/57.2.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ullmann A., Jacob F., Monod J. On the subunit structure of wild-type versus complemented beta-galactosidase of Escherichia coli. J Mol Biol. 1968 Feb 28;32(1):1–13. doi: 10.1016/0022-2836(68)90140-x. [DOI] [PubMed] [Google Scholar]