Nitric oxide reversibly inhibits the epidermal growth factor receptor tyrosine kinase (original) (raw)

Abstract

Although it has been demonstrated that NO inhibits the proliferation of different cell types, the mechanisms of its anti-mitotic action are not well understood. In this work we have studied the possible interaction of NO with the epidermal growth factor receptor (EGFR), using transfected fibroblasts which overexpress the human EGFR. The NO donors S-nitroso-N-acetylpenicillamine (SNAP), 1,1-diethyl-2-hydroxy-2-nitrosohydrazine (DEA-NO) and N-¿4-[1-(3-aminopropyl)-2-hydroxy-2-nitrosohydrazino]butyl¿propane -1, 3-diamine (DETA-NO) inhibited DNA synthesis of fibroblasts growing in the presence of fetal calf serum, epidermal growth factor (EGF) or EGF plus insulin, as assessed by [methyl-3H]thymidine incorporation. Neither 8-bromo-cGMP nor the cGMP-phosphodiesterase inhibitor zaprinast mimicked this effect, suggesting that NO is unlikely to inhibit cell proliferation via a cGMP-dependent pathway. SNAP, DEA-NO and DETA-NO also inhibited the transphosphorylation of the EGFR and its tyrosine kinase activity toward the exogenous substrate poly-l-(Glu-Tyr), as measured in permeabilized cells using [gamma-32P]ATP as phosphate donor. In contrast, 3-[morpholinosydnonimine hydrochloride] (SIN-1), a peroxynitrite-forming compound, did not significantly inhibit either DNA synthesis or the EGFR tyrosine kinase activity. The inhibitory action of DEA-NO on the EGFR tyrosine kinase was prevented by haemoglobin, an NO scavenger, but not by superoxide dismutase, and was reversed by dithiothreitol. The binding of EGF to its receptor was unaffected by DEA-NO. The inhibitory action of DEA-NO on the EGF-dependent transphosphorylation of the receptor was also demonstrated in intact cells by immunoblot analysis using an anti-phosphotyrosine antibody. Taken together, these results suggest that NO, but not peroxynitrite, inhibits in a reversible manner the EGFR tyrosine kinase activity by S-nitrosylation of the receptor.

Full Text

The Full Text of this article is available as a PDF (368.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bolotina V. M., Najibi S., Palacino J. J., Pagano P. J., Cohen R. A. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature. 1994 Apr 28;368(6474):850–853. doi: 10.1038/368850a0. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Caselli A., Camici G., Manao G., Moneti G., Pazzagli L., Cappugi G., Ramponi G. Nitric oxide causes inactivation of the low molecular weight phosphotyrosine protein phosphatase. J Biol Chem. 1994 Oct 7;269(40):24878–24882. [PubMed] [Google Scholar]
  4. Clancy R. M., Levartovsky D., Leszczynska-Piziak J., Yegudin J., Abramson S. B. Nitric oxide reacts with intracellular glutathione and activates the hexose monophosphate shunt in human neutrophils: evidence for S-nitrosoglutathione as a bioactive intermediary. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3680–3684. doi: 10.1073/pnas.91.9.3680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clementi E., Sciorati C., Riccio M., Miloso M., Meldolesi J., Nisticò G. Nitric oxide action on growth factor-elicited signals. Phosphoinositide hydrolysis and [Ca2+]i responses are negatively modulated via a cGMP-dependent protein kinase I pathway. J Biol Chem. 1995 Sep 22;270(38):22277–22282. doi: 10.1074/jbc.270.38.22277. [DOI] [PubMed] [Google Scholar]
  6. Cornwell T. L., Arnold E., Boerth N. J., Lincoln T. M. Inhibition of smooth muscle cell growth by nitric oxide and activation of cAMP-dependent protein kinase by cGMP. Am J Physiol. 1994 Nov;267(5 Pt 1):C1405–C1413. doi: 10.1152/ajpcell.1994.267.5.C1405. [DOI] [PubMed] [Google Scholar]
  7. De Frutos T., Martín-Nieto J., Villalobo A. Phosphorylation of calmodulin by permeabilized fibroblasts overexpressing the human epidermal growth factor receptor. Biol Chem. 1997 Jan;378(1):31–37. doi: 10.1515/bchm.1997.378.1.31. [DOI] [PubMed] [Google Scholar]
  8. Dicker P., Rozengurt E. Phorbol esters and vasopressin stimulate DNA synthesis by a common mechanism. Nature. 1980 Oct 16;287(5783):607–612. doi: 10.1038/287607a0. [DOI] [PubMed] [Google Scholar]
  9. Elexpuru A., Soriano M., Villalobo A. Characterization of the epidermal growth factor receptor from Ehrlich ascites tumor cells. Biol Chem Hoppe Seyler. 1994 Apr;375(4):293–298. doi: 10.1515/bchm3.1994.375.4.293. [DOI] [PubMed] [Google Scholar]
  10. Fantl W. J., Johnson D. E., Williams L. T. Signalling by receptor tyrosine kinases. Annu Rev Biochem. 1993;62:453–481. doi: 10.1146/annurev.bi.62.070193.002321. [DOI] [PubMed] [Google Scholar]
  11. Garg U. C., Devi L., Turndorf H., Goldfrank L. R., Bansinath M. Effect of nitric oxide on mitogenesis and proliferation of cerebellar glial cells. Brain Res. 1992 Oct 2;592(1-2):208–212. doi: 10.1016/0006-8993(92)91678-8. [DOI] [PubMed] [Google Scholar]
  12. Garg U. C., Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest. 1989 May;83(5):1774–1777. doi: 10.1172/JCI114081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Garg U. C., Hassid A. Nitric oxide-generating vasodilators inhibit mitogenesis and proliferation of BALB/C 3T3 fibroblasts by a cyclic GMP-independent mechanism. Biochem Biophys Res Commun. 1990 Aug 31;171(1):474–479. doi: 10.1016/0006-291x(90)91417-q. [DOI] [PubMed] [Google Scholar]
  14. Gow A. J., Duran D., Malcolm S., Ischiropoulos H. Effects of peroxynitrite-induced protein modifications on tyrosine phosphorylation and degradation. FEBS Lett. 1996 Apr 29;385(1-2):63–66. doi: 10.1016/0014-5793(96)00347-x. [DOI] [PubMed] [Google Scholar]
  15. Gross S. S., Wolin M. S. Nitric oxide: pathophysiological mechanisms. Annu Rev Physiol. 1995;57:737–769. doi: 10.1146/annurev.ph.57.030195.003513. [DOI] [PubMed] [Google Scholar]
  16. Gross W. L., Bak M. I., Ingwall J. S., Arstall M. A., Smith T. W., Balligand J. L., Kelly R. A. Nitric oxide inhibits creatine kinase and regulates rat heart contractile reserve. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5604–5609. doi: 10.1073/pnas.93.11.5604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gómez C., Martín C., Galea E., Estrada C. Direct cytotoxicity of ethylcholine mustard aziridinium in cerebral microvascular endothelial cells. J Neurochem. 1993 Apr;60(4):1534–1539. doi: 10.1111/j.1471-4159.1993.tb03318.x. [DOI] [PubMed] [Google Scholar]
  18. Hernández-Sotomayor S. M., Carpenter G. Epidermal growth factor receptor: elements of intracellular communication. J Membr Biol. 1992 Jun;128(2):81–89. doi: 10.1007/BF00231881. [DOI] [PubMed] [Google Scholar]
  19. Hogg N., Darley-Usmar V. M., Wilson M. T., Moncada S. Production of hydroxyl radicals from the simultaneous generation of superoxide and nitric oxide. Biochem J. 1992 Jan 15;281(Pt 2):419–424. doi: 10.1042/bj2810419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jenkins D. C., Charles I. G., Thomsen L. L., Moss D. W., Holmes L. S., Baylis S. A., Rhodes P., Westmore K., Emson P. C., Moncada S. Roles of nitric oxide in tumor growth. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4392–4396. doi: 10.1073/pnas.92.10.4392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. King M. J., Sale G. J. Insulin-receptor phosphotyrosyl-protein phosphatases. Biochem J. 1988 Dec 15;256(3):893–902. doi: 10.1042/bj2560893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kong S. K., Yim M. B., Stadtman E. R., Chock P. B. Peroxynitrite disables the tyrosine phosphorylation regulatory mechanism: Lymphocyte-specific tyrosine kinase fails to phosphorylate nitrated cdc2(6-20)NH2 peptide. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3377–3382. doi: 10.1073/pnas.93.8.3377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kwon N. S., Stuehr D. J., Nathan C. F. Inhibition of tumor cell ribonucleotide reductase by macrophage-derived nitric oxide. J Exp Med. 1991 Oct 1;174(4):761–767. doi: 10.1084/jem.174.4.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. Lander H. M., Ogiste J. S., Pearce S. F., Levi R., Novogrodsky A. Nitric oxide-stimulated guanine nucleotide exchange on p21ras. J Biol Chem. 1995 Mar 31;270(13):7017–7020. doi: 10.1074/jbc.270.13.7017. [DOI] [PubMed] [Google Scholar]
  26. Lander H. M., Ogiste J. S., Teng K. K., Novogrodsky A. p21ras as a common signaling target of reactive free radicals and cellular redox stress. J Biol Chem. 1995 Sep 8;270(36):21195–21198. doi: 10.1074/jbc.270.36.21195. [DOI] [PubMed] [Google Scholar]
  27. Lander H. M., Sehajpal P. K., Novogrodsky A. Nitric oxide signaling: a possible role for G proteins. J Immunol. 1993 Dec 15;151(12):7182–7187. [PubMed] [Google Scholar]
  28. Lei S. Z., Pan Z. H., Aggarwal S. K., Chen H. S., Hartman J., Sucher N. J., Lipton S. A. Effect of nitric oxide production on the redox modulatory site of the NMDA receptor-channel complex. Neuron. 1992 Jun;8(6):1087–1099. doi: 10.1016/0896-6273(92)90130-6. [DOI] [PubMed] [Google Scholar]
  29. Lepoivre M., Boudbid H., Petit J. F. Antiproliferative activity of gamma-interferon combined with lipopolysaccharide on murine adenocarcinoma: dependence on an L-arginine metabolism with production of nitrite and citrulline. Cancer Res. 1989 Apr 15;49(8):1970–1976. [PubMed] [Google Scholar]
  30. Lepoivre M., Chenais B., Yapo A., Lemaire G., Thelander L., Tenu J. P. Alterations of ribonucleotide reductase activity following induction of the nitrite-generating pathway in adenocarcinoma cells. J Biol Chem. 1990 Aug 25;265(24):14143–14149. [PubMed] [Google Scholar]
  31. Lipton S. A., Choi Y. B., Pan Z. H., Lei S. Z., Chen H. S., Sucher N. J., Loscalzo J., Singel D. J., Stamler J. S. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature. 1993 Aug 12;364(6438):626–632. doi: 10.1038/364626a0. [DOI] [PubMed] [Google Scholar]
  32. Lowenstein C. J., Snyder S. H. Nitric oxide, a novel biologic messenger. Cell. 1992 Sep 4;70(5):705–707. doi: 10.1016/0092-8674(92)90301-r. [DOI] [PubMed] [Google Scholar]
  33. Marletta M. A. Nitric oxide: biosynthesis and biological significance. Trends Biochem Sci. 1989 Dec;14(12):488–492. doi: 10.1016/0968-0004(89)90181-3. [DOI] [PubMed] [Google Scholar]
  34. Martin W., Villani G. M., Jothianandan D., Furchgott R. F. Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J Pharmacol Exp Ther. 1985 Mar;232(3):708–716. [PubMed] [Google Scholar]
  35. Molina y Vedia L., McDonald B., Reep B., Brüne B., Di Silvio M., Billiar T. R., Lapetina E. G. Nitric oxide-induced S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation. J Biol Chem. 1992 Dec 15;267(35):24929–24932. [PubMed] [Google Scholar]
  36. Moncada S., Higgs E. A. Molecular mechanisms and therapeutic strategies related to nitric oxide. FASEB J. 1995 Oct;9(13):1319–1330. [PubMed] [Google Scholar]
  37. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  38. Morley D., Keefer L. K. Nitric oxide/nucleophile complexes: a unique class of nitric oxide-based vasodilators. J Cardiovasc Pharmacol. 1993;22 (Suppl 7):S3–S9. [PubMed] [Google Scholar]
  39. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992 Sep;6(12):3051–3064. [PubMed] [Google Scholar]
  40. Nathan C., Xie Q. W. Nitric oxide synthases: roles, tolls, and controls. Cell. 1994 Sep 23;78(6):915–918. doi: 10.1016/0092-8674(94)90266-6. [DOI] [PubMed] [Google Scholar]
  41. Pandiella A., Beguinot L., Velu T. J., Meldolesi J. Transmembrane signalling at epidermal growth factor receptors overexpressed in NIH 3T3 cells. Phosphoinositide hydrolysis, cytosolic Ca2+ increase and alkalinization correlate with epidermal-growth-factor-induced cell proliferation. Biochem J. 1988 Aug 15;254(1):223–228. doi: 10.1042/bj2540223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schmidt H. H., Walter U. NO at work. Cell. 1994 Sep 23;78(6):919–925. doi: 10.1016/0092-8674(94)90267-4. [DOI] [PubMed] [Google Scholar]
  43. Schuman E. M., Madison D. V. Nitric oxide and synaptic function. Annu Rev Neurosci. 1994;17:153–183. doi: 10.1146/annurev.ne.17.030194.001101. [DOI] [PubMed] [Google Scholar]
  44. Stamler J. S. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell. 1994 Sep 23;78(6):931–936. doi: 10.1016/0092-8674(94)90269-0. [DOI] [PubMed] [Google Scholar]
  45. Stamler J. S., Simon D. I., Osborne J. A., Mullins M. E., Jaraki O., Michel T., Singel D. J., Loscalzo J. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):444–448. doi: 10.1073/pnas.89.1.444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Terenzi F., Casado M., Martín-Sanz P., Boscá L. Epidermal growth factor inhibits cytokine-dependent nitric oxide synthase expression in hepatocytes. FEBS Lett. 1995 Jul 10;368(1):193–196. doi: 10.1016/0014-5793(95)00646-q. [DOI] [PubMed] [Google Scholar]
  47. Ullrich A., Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990 Apr 20;61(2):203–212. doi: 10.1016/0092-8674(90)90801-k. [DOI] [PubMed] [Google Scholar]
  48. Yang W., Ando J., Korenaga R., Toyo-oka T., Kamiya A. Exogenous nitric oxide inhibits proliferation of cultured vascular endothelial cells. Biochem Biophys Res Commun. 1994 Sep 15;203(2):1160–1167. doi: 10.1006/bbrc.1994.2304. [DOI] [PubMed] [Google Scholar]