Functional implications of ribosomal protein L2 in protein biosynthesis as shown by in vivo replacement studies (original) (raw)
Abstract
The translational apparatus is a highly complex structure containing three to four RNA molecules and more than 50 different proteins. In recent years considerable evidence has accumulated to indicate that the RNA participates intensively in the catalysis of peptide-bond formation, whereas a direct involvement of the ribosomal proteins has yet to be demonstrated. Here we report the functional and structural conservation of a peptidyltransferase centre protein in all three phylogenetic domains. In vivo replacement studies show that the Escherichia coli L2 protein can be replaced by its homologous proteins from human and archaebacterial ribosomes. These hybrid ribosomes are active in protein biosynthesis, as proven by polysome analysis and poly(U)-dependent polyphenylalanine synthesis. Furthermore, we demonstrate that a specific, highly conserved, histidine residue in the C-terminal region of L2 is essential for the function of the translational apparatus. Replacement of this histidine residue in the human and archaebacterial proteins by glycine, arginine or alanine had no effect on ribosome assembly, but strongly reduced the translational activity of ribosomes containing these mutants.
Full Text
The Full Text of this article is available as a PDF (474.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arndt E., Krömer W., Hatakeyama T. Organization and nucleotide sequence of a gene cluster coding for eight ribosomal proteins in the archaebacterium Halobacterium marismortui. J Biol Chem. 1990 Feb 25;265(6):3034–3039. [PubMed] [Google Scholar]
- Baxter R. M., White V. T., Zahid N. D. The modification of the peptidyltransferase activity of 50-S ribosomal subunits, LiCl-split proteins and L16 ribosomal protein by pyridoxal phosphate. Eur J Biochem. 1980 Sep;110(1):161–166. doi: 10.1111/j.1432-1033.1980.tb04851.x. [DOI] [PubMed] [Google Scholar]
- Beauclerk A. A., Cundliffe E. The binding site for ribosomal protein L2 within 23S ribosomal RNA of Escherichia coli. EMBO J. 1988 Nov;7(11):3589–3594. doi: 10.1002/j.1460-2075.1988.tb03236.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blake M. S., Johnston K. H., Russell-Jones G. J., Gotschlich E. C. A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots. Anal Biochem. 1984 Jan;136(1):175–179. doi: 10.1016/0003-2697(84)90320-8. [DOI] [PubMed] [Google Scholar]
- Brimacombe R. The structure of ribosomal RNA: a three-dimensional jigsaw puzzle. Eur J Biochem. 1995 Jun 1;230(2):365–383. [PubMed] [Google Scholar]
- Brockmöller J., Kamp R. M. Isolation and identification of two protein-protein crosslinks within the two subunits of Bacillus stearothermophilus ribosomes. Biol Chem Hoppe Seyler. 1986 Sep;367(9):925–935. doi: 10.1515/bchm3.1986.367.2.925. [DOI] [PubMed] [Google Scholar]
- Bubunenko M. G., Schmidt J., Subramanian A. R. Protein substitution in chloroplast ribosome evolution. A eukaryotic cytosolic protein has replaced its organelle homologue (L23) in spinach. J Mol Biol. 1994 Jul 1;240(1):28–41. doi: 10.1006/jmbi.1994.1415. [DOI] [PubMed] [Google Scholar]
- Böhm G., Jaenicke R. A structure-based model for the halophilic adaptation of dihydrofolate reductase from Halobacterium volcanii. Protein Eng. 1994 Feb;7(2):213–220. doi: 10.1093/protein/7.2.213. [DOI] [PubMed] [Google Scholar]
- Cech T. R., Zaug A. J., Grabowski P. J. In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell. 1981 Dec;27(3 Pt 2):487–496. doi: 10.1016/0092-8674(81)90390-1. [DOI] [PubMed] [Google Scholar]
- Cooperman B. S., Wooten T., Romero D. P., Traut R. R. Histidine 229 in protein L2 is apparently essential for 50S peptidyl transferase activity. Biochem Cell Biol. 1995 Nov-Dec;73(11-12):1087–1094. doi: 10.1139/o95-117. [DOI] [PubMed] [Google Scholar]
- Dohme F., Fahnestock S. R. Identification of proteins involved in the peptidyl transferase activity of ribosomes by chemical modification. J Mol Biol. 1979 Mar 25;129(1):63–81. doi: 10.1016/0022-2836(79)90060-3. [DOI] [PubMed] [Google Scholar]
- Egebjerg J., Christiansen J., Garrett R. A. Attachment sites of primary binding proteins L1, L2 and L23 on 23 S ribosomal RNA of Escherichia coli. J Mol Biol. 1991 Nov 20;222(2):251–264. doi: 10.1016/0022-2836(91)90210-w. [DOI] [PubMed] [Google Scholar]
- Franceschi F. J., Nierhaus K. H. Ribosomal proteins L15 and L16 are mere late assembly proteins of the large ribosomal subunit. Analysis of an Escherichia coli mutant lacking L15. J Biol Chem. 1990 Sep 25;265(27):16676–16682. [PubMed] [Google Scholar]
- Geyl D., Böck A., Isono K. An improved method for two-dimensional gel-electrophoresis: analysis of mutationally altered ribosomal proteins of Escherichia coli. Mol Gen Genet. 1981;181(3):309–312. doi: 10.1007/BF00425603. [DOI] [PubMed] [Google Scholar]
- Hanes J., Klaudiny J., von der Kammer H., Scheit K. H. Characterization by cDNA cloning of the mRNA of human ribosomal protein L8. Biochem Biophys Res Commun. 1993 Dec 30;197(3):1223–1228. doi: 10.1006/bbrc.1993.2607. [DOI] [PubMed] [Google Scholar]
- Hardy S. J., Kurland C. G., Voynow P., Mora G. The ribosomal proteins of Escherichia coli. I. Purification of the 30S ribosomal proteins. Biochemistry. 1969 Jul;8(7):2897–2905. doi: 10.1021/bi00835a031. [DOI] [PubMed] [Google Scholar]
- Joseph S., Noller H. F. Mapping the rRNA neighborhood of the acceptor end of tRNA in the ribosome. EMBO J. 1996 Feb 15;15(4):910–916. [PMC free article] [PubMed] [Google Scholar]
- Köpke A. K., Leggatt P. A., Matheson A. T. Structure function relationships in the ribosomal stalk proteins of archaebacteria. J Biol Chem. 1992 Jan 15;267(2):1382–1390. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lieberman K. R., Dahlberg A. E. Ribosome-catalyzed peptide-bond formation. Prog Nucleic Acid Res Mol Biol. 1995;50:1–23. [PubMed] [Google Scholar]
- Maden B. E., Monro R. E. Ribosome-catalyzed peptidyl transfer. Effects of cations and pH value. Eur J Biochem. 1968 Nov;6(2):309–316. doi: 10.1111/j.1432-1033.1968.tb00450.x. [DOI] [PubMed] [Google Scholar]
- Meltzer N. M., Tous G. I., Gruber S., Stein S. Gas-phase hydrolysis of proteins and peptides. Anal Biochem. 1987 Feb 1;160(2):356–361. doi: 10.1016/0003-2697(87)90060-1. [DOI] [PubMed] [Google Scholar]
- Müller E. C., Wittmann-Liebold B. Phylogenetic relationship of organisms obtained by ribosomal protein comparison. Cell Mol Life Sci. 1997 Jan;53(1):34–50. doi: 10.1007/PL00000578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nag B., Tewari D. S., Etchison J. R., Sommer A., Traut R. R. Two monoclonal antibodies against Escherichia coli ribosomal protein L2 distinguish different locations for their respective epitopes in intact ribosomes. J Biol Chem. 1986 Oct 25;261(30):13892–13897. [PubMed] [Google Scholar]
- Nierhaus K. H. The assembly of prokaryotic ribosomes. Biochimie. 1991 Jun;73(6):739–755. doi: 10.1016/0300-9084(91)90054-5. [DOI] [PubMed] [Google Scholar]
- Noller H. F., Hoffarth V., Zimniak L. Unusual resistance of peptidyl transferase to protein extraction procedures. Science. 1992 Jun 5;256(5062):1416–1419. doi: 10.1126/science.1604315. [DOI] [PubMed] [Google Scholar]
- Olson H. M., Nag B., Etchison J. R., Traut R. R., Glitz D. G. Differential localization of two epitopes of Escherichia coli ribosomal protein L2 on the large ribosomal subunit by immune electron microscopy using monoclonal antibodies. J Biol Chem. 1991 Jan 25;266(3):1898–1902. [PubMed] [Google Scholar]
- Picard V., Ersdal-Badju E., Lu A., Bock S. C. A rapid and efficient one-tube PCR-based mutagenesis technique using Pfu DNA polymerase. Nucleic Acids Res. 1994 Jul 11;22(13):2587–2591. doi: 10.1093/nar/22.13.2587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Purohit P., Stern S. Interactions of a small RNA with antibiotic and RNA ligands of the 30S subunit. Nature. 1994 Aug 25;370(6491):659–662. doi: 10.1038/370659a0. [DOI] [PubMed] [Google Scholar]
- Remme J., Margus T., Villems R., Nierhaus K. H. The third ribosomal tRNA-binding site, the E site, is occupied in native polysomes. Eur J Biochem. 1989 Aug 1;183(2):281–284. doi: 10.1111/j.1432-1033.1989.tb14925.x. [DOI] [PubMed] [Google Scholar]
- Rheinberger H. J., Geigenmüller U., Wedde M., Nierhaus K. H. Parameters for the preparation of Escherichia coli ribosomes and ribosomal subunits active in tRNA binding. Methods Enzymol. 1988;164:658–670. doi: 10.1016/s0076-6879(88)64076-6. [DOI] [PubMed] [Google Scholar]
- Romero D. P., Arredondo J. A., Traut R. R. Identification of a region of Escherichia coli ribosomal protein L2 required for the assembly of L16 into the 50 S ribosomal subunit. J Biol Chem. 1990 Oct 25;265(30):18185–18191. [PubMed] [Google Scholar]
- Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walsh M. J., McDougall J., Wittmann-Liebold B. Extended N-terminal sequencing of proteins of archaebacterial ribosomes blotted from two-dimensional gels onto glass fiber and poly(vinylidene difluoride) membrane. Biochemistry. 1988 Sep 6;27(18):6867–6876. doi: 10.1021/bi00418a032. [DOI] [PubMed] [Google Scholar]
- Watanabe K., Kimura M. Location of the binding region for 23S ribosomal RNA on ribosomal protein L2 from Bacillus stearothermophilus. Eur J Biochem. 1985 Dec 2;153(2):299–304. doi: 10.1111/j.1432-1033.1985.tb09300.x. [DOI] [PubMed] [Google Scholar]
- Wittmann-Liebold B., Uhlein M., Urlaub H., Müller E. C., Otto A., Bischof O. Structural and functional implications in the eubacterial ribosome as revealed by protein-rRNA and antibiotic contact sites. Biochem Cell Biol. 1995 Nov-Dec;73(11-12):1187–1197. doi: 10.1139/o95-128. [DOI] [PubMed] [Google Scholar]
- Yokote Y., Arai K. M., Akahane K. Recovery of tryptophan from 25-minute acid hydrolysates of protein. Anal Biochem. 1986 Feb 1;152(2):245–249. doi: 10.1016/0003-2697(86)90405-7. [DOI] [PubMed] [Google Scholar]