Reactions of nitric oxide with mitochondrial cytochrome c: a novel mechanism for the formation of nitroxyl anion and peroxynitrite (original) (raw)
Abstract
The aerobic reactions of nitric oxide with cytochrome c were analysed. Nitric oxide (NO) reacts with ferrocytochrome c at a rate of 200 M-1 s-1 to form ferricytochrome c and nitroxyl anion (NO-). Ferricytochrome c was detected by optical spectroscopy; NO- was detected by trapping with metmyoglobin (Mb3+) to form the EPR-detectable Mb-nitrosyl complex, and by the formation of dimers in yeast ferrocytochrome c via cross-linking of the free cysteine residue. The NO- formed subsequently reacted with oxygen to form peroxynitrite, as measured by the oxidation of dihydrorhodamine 123. NO binds to ferricytochrome c to form the ferricytochrome c-NO complex. The on-rate for this reaction is 1.3+/-0.4x10(3) M-1.s-1, and the off-rate is 0.087+/-0.054 s-1. The dissociation constant (Kd) of the complex is 22+/-7 microM. These reactions of NO with cytochrome c are likely to be relevant to mitochondrial metabolism of NO. Ferricytochrome c can act as a reversible sink for excess NO in the mitochondria. The reduction of NO to NO- by ferrocytochrome c may play a role in the irreversible inhibition of mitochondrial oxygen consumption by peroxynitrite. It is generally assumed that peroxynitrite would be formed in mitochondria via the reaction of NO with superoxide. The finding that NO- is formed from the reaction of NO and ferrocytochrome c provides a means of producing peroxynitrite in the absence of superoxide, via the reaction of NO- with oxygen.
Full Text
The Full Text of this article is available as a PDF (823.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ascenzi P., Coletta M., Santucci R., Polizio F., Desideri A. Nitric oxide binding to ferrous native horse heart cytochrome c and to its carboxymethylated derivative: a spectroscopic and thermodynamic study. J Inorg Biochem. 1994 Mar;53(4):273–280. doi: 10.1016/0162-0134(94)85114-x. [DOI] [PubMed] [Google Scholar]
- BUTT W. D., KEILIN D. Absorption spectra and some other properties of cytochrome c and of its compounds with ligands. Proc R Soc Lond B Biol Sci. 1962 Nov 20;156:429–458. doi: 10.1098/rspb.1962.0049. [DOI] [PubMed] [Google Scholar]
- Borutaité V., Brown G. C. Rapid reduction of nitric oxide by mitochondria, and reversible inhibition of mitochondrial respiration by nitric oxide. Biochem J. 1996 Apr 1;315(Pt 1):295–299. doi: 10.1042/bj3150295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown G. C., Bolaños J. P., Heales S. J., Clark J. B. Nitric oxide produced by activated astrocytes rapidly and reversibly inhibits cellular respiration. Neurosci Lett. 1995 Jul 7;193(3):201–204. doi: 10.1016/0304-3940(95)11703-y. [DOI] [PubMed] [Google Scholar]
- Brown G. C., Cooper C. E. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett. 1994 Dec 19;356(2-3):295–298. doi: 10.1016/0014-5793(94)01290-3. [DOI] [PubMed] [Google Scholar]
- Brown G. C. Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett. 1995 Aug 7;369(2-3):136–139. doi: 10.1016/0014-5793(95)00763-y. [DOI] [PubMed] [Google Scholar]
- Brudvig G. W., Stevens T. H., Chan S. I. Reactions of nitric oxide with cytochrome c oxidase. Biochemistry. 1980 Nov 11;19(23):5275–5285. doi: 10.1021/bi00564a020. [DOI] [PubMed] [Google Scholar]
- Clarkson R. B., Norby S. W., Smirnov A., Boyer S., Vahidi N., Nims R. W., Wink D. A. Direct measurement of the accumulation and mitochondrial conversion of nitric oxide within Chinese hamster ovary cells using an intracellular electron paramagnetic resonance technique. Biochim Biophys Acta. 1995 Apr 13;1243(3):496–502. doi: 10.1016/0304-4165(94)00181-v. [DOI] [PubMed] [Google Scholar]
- Cleeter M. W., Cooper J. M., Darley-Usmar V. M., Moncada S., Schapira A. H. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett. 1994 May 23;345(1):50–54. doi: 10.1016/0014-5793(94)00424-2. [DOI] [PubMed] [Google Scholar]
- Cooper C. E., Brown G. C. The interactions between nitric oxide and brain nerve terminals as studied by electron paramagnetic resonance. Biochem Biophys Res Commun. 1995 Jul 17;212(2):404–412. doi: 10.1006/bbrc.1995.1984. [DOI] [PubMed] [Google Scholar]
- Dawson V. L., Dawson T. M. Nitric oxide neurotoxicity. J Chem Neuroanat. 1996 Jun;10(3-4):179–190. doi: 10.1016/0891-0618(96)00148-2. [DOI] [PubMed] [Google Scholar]
- Di Cera E., Doyle M. L., Gill S. J. Alkaline Bohr effect of human hemoglobin Ao. J Mol Biol. 1988 Apr 5;200(3):593–599. doi: 10.1016/0022-2836(88)90545-1. [DOI] [PubMed] [Google Scholar]
- Dupré S., Brunori M., Wilson M. T., Greenwood C. Kinetics of carbon monoxide binding and electron transfer by cytochrome c polymers. Biochem J. 1974 Jul;141(1):299–304. doi: 10.1042/bj1410299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giuffrè A., Sarti P., D'Itri E., Buse G., Soulimane T., Brunori M. On the mechanism of inhibition of cytochrome c oxidase by nitric oxide. J Biol Chem. 1996 Dec 27;271(52):33404–33408. doi: 10.1074/jbc.271.52.33404. [DOI] [PubMed] [Google Scholar]
- Hogg N., Darley-Usmar V. M., Graham A., Moncada S. Peroxynitrite and atherosclerosis. Biochem Soc Trans. 1993 May;21(2):358–362. doi: 10.1042/bst0210358. [DOI] [PubMed] [Google Scholar]
- Hogg N., Singh R. J., Kalyanaraman B. The role of glutathione in the transport and catabolism of nitric oxide. FEBS Lett. 1996 Mar 18;382(3):223–228. doi: 10.1016/0014-5793(96)00086-5. [DOI] [PubMed] [Google Scholar]
- Iadecola C., Xu X., Zhang F., el-Fakahany E. E., Ross M. E. Marked induction of calcium-independent nitric oxide synthase activity after focal cerebral ischemia. J Cereb Blood Flow Metab. 1995 Jan;15(1):52–59. doi: 10.1038/jcbfm.1995.6. [DOI] [PubMed] [Google Scholar]
- Ignarro L. J., Fukuto J. M., Griscavage J. M., Rogers N. E., Byrns R. E. Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: comparison with enzymatically formed nitric oxide from L-arginine. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8103–8107. doi: 10.1073/pnas.90.17.8103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kader A., Frazzini V. I., Solomon R. A., Trifiletti R. R. Nitric oxide production during focal cerebral ischemia in rats. Stroke. 1993 Nov;24(11):1709–1716. doi: 10.1161/01.str.24.11.1709. [DOI] [PubMed] [Google Scholar]
- Knowles R. G., Moncada S. Nitric oxide synthases in mammals. Biochem J. 1994 Mar 1;298(Pt 2):249–258. doi: 10.1042/bj2980249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kon H. Electron paramagnetic resonance of nitric oxide cytochrome C. Biochem Biophys Res Commun. 1969 May 8;35(3):423–427. doi: 10.1016/0006-291x(69)90517-8. [DOI] [PubMed] [Google Scholar]
- Kooy N. W., Royall J. A., Ischiropoulos H., Beckman J. S. Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic Biol Med. 1994 Feb;16(2):149–156. doi: 10.1016/0891-5849(94)90138-4. [DOI] [PubMed] [Google Scholar]
- Kooy N. W., Royall J. A., Ye Y. Z., Kelly D. R., Beckman J. S. Evidence for in vivo peroxynitrite production in human acute lung injury. Am J Respir Crit Care Med. 1995 Apr;151(4):1250–1254. doi: 10.1164/ajrccm/151.4.1250. [DOI] [PubMed] [Google Scholar]
- Kroemer G., Zamzami N., Susin S. A. Mitochondrial control of apoptosis. Immunol Today. 1997 Jan;18(1):44–51. doi: 10.1016/s0167-5699(97)80014-x. [DOI] [PubMed] [Google Scholar]
- Kuboyama M., Yong F. C., King T. E. Studies on cytochrome oxidase. 8. Preparation and some properties of cardiac cytochrome oxidase. J Biol Chem. 1972 Oct 25;247(20):6375–6383. [PubMed] [Google Scholar]
- Lewis R. S., Deen W. M. Kinetics of the reaction of nitric oxide with oxygen in aqueous solutions. Chem Res Toxicol. 1994 Jul-Aug;7(4):568–574. doi: 10.1021/tx00040a013. [DOI] [PubMed] [Google Scholar]
- Lipton S. A., Choi Y. B., Pan Z. H., Lei S. Z., Chen H. S., Sucher N. J., Loscalzo J., Singel D. J., Stamler J. S. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature. 1993 Aug 12;364(6438):626–632. doi: 10.1038/364626a0. [DOI] [PubMed] [Google Scholar]
- Liu X., Kim C. N., Yang J., Jemmerson R., Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996 Jul 12;86(1):147–157. doi: 10.1016/s0092-8674(00)80085-9. [DOI] [PubMed] [Google Scholar]
- Malinski T., Bailey F., Zhang Z. G., Chopp M. Nitric oxide measured by a porphyrinic microsensor in rat brain after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab. 1993 May;13(3):355–358. doi: 10.1038/jcbfm.1993.48. [DOI] [PubMed] [Google Scholar]
- Matheis G., Sherman M. P., Buckberg G. D., Haybron D. M., Young H. H., Ignarro L. J. Role of L-arginine-nitric oxide pathway in myocardial reoxygenation injury. Am J Physiol. 1992 Feb;262(2 Pt 2):H616–H620. doi: 10.1152/ajpheart.1992.262.2.H616. [DOI] [PubMed] [Google Scholar]
- Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
- Murphy M. E., Sies H. Reversible conversion of nitroxyl anion to nitric oxide by superoxide dismutase. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10860–10864. doi: 10.1073/pnas.88.23.10860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfeiffer S., Gorren A. C., Schmidt K., Werner E. R., Hansert B., Bohle D. S., Mayer B. Metabolic fate of peroxynitrite in aqueous solution. Reaction with nitric oxide and pH-dependent decomposition to nitrite and oxygen in a 2:1 stoichiometry. J Biol Chem. 1997 Feb 7;272(6):3465–3470. doi: 10.1074/jbc.272.6.3465. [DOI] [PubMed] [Google Scholar]
- Schweizer M., Richter C. Nitric oxide potently and reversibly deenergizes mitochondria at low oxygen tension. Biochem Biophys Res Commun. 1994 Oct 14;204(1):169–175. doi: 10.1006/bbrc.1994.2441. [DOI] [PubMed] [Google Scholar]
- Shimaoka M., Iida T., Ohara A., Taenaka N., Mashimo T., Honda T., Yoshiya I. NOC, a nitric-oxide-releasing compound, induces dose dependent apoptosis in macrophages. Biochem Biophys Res Commun. 1995 Apr 17;209(2):519–526. doi: 10.1006/bbrc.1995.1532. [DOI] [PubMed] [Google Scholar]
- Stamler J. S., Singel D. J., Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science. 1992 Dec 18;258(5090):1898–1902. doi: 10.1126/science.1281928. [DOI] [PubMed] [Google Scholar]
- Takehara Y., Kanno T., Yoshioka T., Inoue M., Utsumi K. Oxygen-dependent regulation of mitochondrial energy metabolism by nitric oxide. Arch Biochem Biophys. 1995 Oct 20;323(1):27–32. doi: 10.1006/abbi.1995.0005. [DOI] [PubMed] [Google Scholar]
- Tominaga T., Sato S., Ohnishi T., Ohnishi S. T. Electron paramagnetic resonance (EPR) detection of nitric oxide produced during forebrain ischemia of the rat. J Cereb Blood Flow Metab. 1994 Sep;14(5):715–722. doi: 10.1038/jcbfm.1994.92. [DOI] [PubMed] [Google Scholar]
- Torres J., Darley-Usmar V., Wilson M. T. Inhibition of cytochrome c oxidase in turnover by nitric oxide: mechanism and implications for control of respiration. Biochem J. 1995 Nov 15;312(Pt 1):169–173. doi: 10.1042/bj3120169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tyler D. D. Polarographic assay and intracellular distribution of superoxide dismutase in rat liver. Biochem J. 1975 Jun;147(3):493–504. doi: 10.1042/bj1470493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Westenberger U., Thanner S., Ruf H. H., Gersonde K., Sutter G., Trentz O. Formation of free radicals and nitric oxide derivative of hemoglobin in rats during shock syndrome. Free Radic Res Commun. 1990;11(1-3):167–178. doi: 10.3109/10715769009109680. [DOI] [PubMed] [Google Scholar]
- Zhao X. J., Sampath V., Caughey W. S. Cytochrome c oxidase catalysis of the reduction of nitric oxide to nitrous oxide. Biochem Biophys Res Commun. 1995 Jul 26;212(3):1054–1060. doi: 10.1006/bbrc.1995.2076. [DOI] [PubMed] [Google Scholar]