Effects of photoreleased cADP-ribose on calcium transients and calcium sparks in myocytes isolated from guinea-pig and rat ventricle (original) (raw)

. 1999 Sep 1;342(Pt 2):269–273.

Abstract

Actions of photoreleased cADP-ribose (cADPR), a novel regulator of calcium-induced calcium release (CICR) from ryanodine-sensitive stores, were investigated in cardiac myocytes. Photoreleased cADPR caused an increase in the magnitude of whole-cell calcium transients studied in mammalian cardiac ventricular myocytes (both guinea-pig and rat) using confocal microscopy). Approx. 15 s was required following photorelease of cADPR for the development of its maximal effect. Photoreleased cADPR also increased the frequency of calcium 'sparks', which are thought to be elementary events which make up the whole-cell calcium transient, and were studied in rat myocytes, but had little or no effect on spark characteristics (amplitude, rise time, decay time and distance to half amplitude). The potentiating effects of photoreleased cADPR on both whole-cell transients and the frequency of calcium sparks were prevented by cytosolic application of the antagonist 8-amino-cADPR (5 microM). These experiments, therefore, provide the first evidence in any cell type for an effect of cADPR on calcium sparks, and are the first to show the actions of photoreleased cADPR on whole-cell calcium transients in mammalian cells. The observations are consistent with the effects of cADPR in enhancing the calcium sensitivity of CICR from the sarcoplasmic reticulum in cardiac ventricular myocytes, leading to an increase in the probability of occurrence of calcium sparks and to an increase in whole-cell calcium transients. The slow time-course for development of the full effect on whole-cell calcium transients might be taken to indicate that the influence of cADPR on CICR may involve complex molecular interactions rather than a simple direct action of cADPR on the ryanodine-receptor channels.

Full Text

The Full Text of this article is available as a PDF (172.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aarhus R., Gee K., Lee H. C. Caged cyclic ADP-ribose. Synthesis and use. J Biol Chem. 1995 Mar 31;270(13):7745–7749. doi: 10.1074/jbc.270.13.7745. [DOI] [PubMed] [Google Scholar]
  2. Berridge M., Lipp P., Bootman M. Calcium signalling. Curr Biol. 1999 Mar 11;9(5):R157–R159. doi: 10.1016/s0960-9822(99)80101-8. [DOI] [PubMed] [Google Scholar]
  3. Cheng H., Lederer W. J., Cannell M. B. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science. 1993 Oct 29;262(5134):740–744. doi: 10.1126/science.8235594. [DOI] [PubMed] [Google Scholar]
  4. Eisner D. A., Trafford A. W., Díaz M. E., Overend C. L., O'Neill S. C. The control of Ca release from the cardiac sarcoplasmic reticulum: regulation versus autoregulation. Cardiovasc Res. 1998 Jun;38(3):589–604. doi: 10.1016/s0008-6363(98)00062-5. [DOI] [PubMed] [Google Scholar]
  5. Fruen B. R., Mickelson J. R., Shomer N. H., Velez P., Louis C. F. Cyclic ADP-ribose does not affect cardiac or skeletal muscle ryanodine receptors. FEBS Lett. 1994 Sep 26;352(2):123–126. doi: 10.1016/0014-5793(94)00931-7. [DOI] [PubMed] [Google Scholar]
  6. Guo X., Laflamme M. A., Becker P. L. Cyclic ADP-ribose does not regulate sarcoplasmic reticulum Ca2+ release in intact cardiac myocytes. Circ Res. 1996 Jul;79(1):147–151. doi: 10.1161/01.res.79.1.147. [DOI] [PubMed] [Google Scholar]
  7. Iino S., Cui Y., Galione A., Terrar D. A. Actions of cADP-ribose and its antagonists on contraction in guinea pig isolated ventricular myocytes. Influence of temperature. Circ Res. 1997 Nov;81(5):879–884. doi: 10.1161/01.res.81.5.879. [DOI] [PubMed] [Google Scholar]
  8. Lee H. C., Aarhus R., Graeff R., Gurnack M. E., Walseth T. F. Cyclic ADP ribose activation of the ryanodine receptor is mediated by calmodulin. Nature. 1994 Jul 28;370(6487):307–309. doi: 10.1038/370307a0. [DOI] [PubMed] [Google Scholar]
  9. Lee H. C. Mechanisms of calcium signaling by cyclic ADP-ribose and NAADP. Physiol Rev. 1997 Oct;77(4):1133–1164. doi: 10.1152/physrev.1997.77.4.1133. [DOI] [PubMed] [Google Scholar]
  10. Lee H. C. Potentiation of calcium- and caffeine-induced calcium release by cyclic ADP-ribose. J Biol Chem. 1993 Jan 5;268(1):293–299. [PubMed] [Google Scholar]
  11. Mitchell M. R., Powell T., Terrar D. A., Twist V. W. The effects of ryanodine, EGTA and low-sodium on action potentials in rat and guinea-pig ventricular myocytes: evidence for two inward currents during the plateau. Br J Pharmacol. 1984 Mar;81(3):543–550. doi: 10.1111/j.1476-5381.1984.tb10107.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mészáros L. G., Bak J., Chu A. Cyclic ADP-ribose as an endogenous regulator of the non-skeletal type ryanodine receptor Ca2+ channel. Nature. 1993 Jul 1;364(6432):76–79. doi: 10.1038/364076a0. [DOI] [PubMed] [Google Scholar]
  13. Noguchi N., Takasawa S., Nata K., Tohgo A., Kato I., Ikehata F., Yonekura H., Okamoto H. Cyclic ADP-ribose binds to FK506-binding protein 12.6 to release Ca2+ from islet microsomes. J Biol Chem. 1997 Feb 7;272(6):3133–3136. doi: 10.1074/jbc.272.6.3133. [DOI] [PubMed] [Google Scholar]
  14. Powell T., Terrar D. A., Twist V. W. Electrical properties of individual cells isolated from adult rat ventricular myocardium. J Physiol. 1980 May;302:131–153. doi: 10.1113/jphysiol.1980.sp013234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rakovic S., Cui Y., Iino S., Galione A., Ashamu G. A., Potter B. V., Terrar D. A. An antagonist of cADP-ribose inhibits arrhythmogenic oscillations of intracellular Ca2+ in heart cells. J Biol Chem. 1999 Jun 18;274(25):17820–17827. doi: 10.1074/jbc.274.25.17820. [DOI] [PubMed] [Google Scholar]
  16. Rakovic S., Galione A., Ashamu G. A., Potter B. V., Terrar D. A. A specific cyclic ADP-ribose antagonist inhibits cardiac excitation-contraction coupling. Curr Biol. 1996 Aug 1;6(8):989–996. doi: 10.1016/s0960-9822(02)00643-7. [DOI] [PubMed] [Google Scholar]
  17. Shirokova N., González A., Kirsch W. G., Ríos E., Pizarro G., Stern M. D., Cheng H. Calcium sparks: release packets of uncertain origin and fundamental role. J Gen Physiol. 1999 Mar;113(3):377–384. doi: 10.1085/jgp.113.3.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sitsapesan R., McGarry S. J., Williams A. J. Cyclic ADP-ribose competes with ATP for the adenine nucleotide binding site on the cardiac ryanodine receptor Ca(2+)-release channel. Circ Res. 1994 Sep;75(3):596–600. doi: 10.1161/01.res.75.3.596. [DOI] [PubMed] [Google Scholar]
  19. Takasawa S., Ishida A., Nata K., Nakagawa K., Noguchi N., Tohgo A., Kato I., Yonekura H., Fujisawa H., Okamoto H. Requirement of calmodulin-dependent protein kinase II in cyclic ADP-ribose-mediated intracellular Ca2+ mobilization. J Biol Chem. 1995 Dec 22;270(51):30257–30259. doi: 10.1074/jbc.270.51.30257. [DOI] [PubMed] [Google Scholar]
  20. Tanaka Y., Tashjian A. H., Jr Calmodulin is a selective mediator of Ca(2+)-induced Ca2+ release via the ryanodine receptor-like Ca2+ channel triggered by cyclic ADP-ribose. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3244–3248. doi: 10.1073/pnas.92.8.3244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Walseth T. F., Aarhus R., Kerr J. A., Lee H. C. Identification of cyclic ADP-ribose-binding proteins by photoaffinity labeling. J Biol Chem. 1993 Dec 15;268(35):26686–26691. [PubMed] [Google Scholar]
  22. Walseth T. F., Lee H. C. Synthesis and characterization of antagonists of cyclic-ADP-ribose-induced Ca2+ release. Biochim Biophys Acta. 1993 Sep 13;1178(3):235–242. doi: 10.1016/0167-4889(93)90199-y. [DOI] [PubMed] [Google Scholar]
  23. Yamaguchi F., Sanbe A., Takeo S. Effects of long-term treatment with trandolapril on sarcoplasmic reticulum function of cardiac muscle in rats with chronic heart failure following myocardial infarction. Br J Pharmacol. 1998 Jan;123(2):326–334. doi: 10.1038/sj.bjp.0701592. [DOI] [PMC free article] [PubMed] [Google Scholar]