Enzymic characterization in vitro of recombinant proprotein convertase PC4 (original) (raw)

. 1999 Oct 1;343(Pt 1):29–37.

Abstract

Proprotein convertase PC4A, a member of the subtilisin/kexin family of serine proteases, was obtained in enzymically active form following expression of vaccinia virus recombinant rat (r)PC4A in GH4C1 cells. It displayed maximal activity at pH 7.0 and a Ca(2+) concentration of 2.0 mM. Using PC4-specific antibodies, Western blot analysis of the medium revealed a major band at approximately 54 kDa, corresponding to the molecular size of mature rPC4A. Among the various peptidyl-[4-methylcoumarin 7-amide (MCA)] substrates tested, the one that was preferred the most by rPC4A was acetyl (Ac)-Arg-Lys-Lys-Arg-MCA, which is cleaved 9 times faster (as judged from V(max)/K(m) measurements) than the best furin and PC1 substrate, pGlu-Arg-Thr-Lys-Arg-MCA. Recombinant rPC4A, along with human (h)furin and hPC1, cleaved a 17-amino-acid synthetic peptide, YQTLRRRVKR downward arrowSLVVPTD (where downward arrow denotes site of cleavage, and the important basic residues are shown in bold), encompassing the junction between the putative pro-segment of rPC4A and the active enzyme, suggesting a possible auto-activation of the enzyme. In an effort to identify potential physiological substrates for PC4, studies were performed with pro-[insulin-growth-factor (IGF)]-derived synthetic peptides, namely Ac-PAKSAR downward arrowSVRA (IGF-I(66-75)) and Ac-PAKSER downward arrowDVST (IGF-II(63-72)), as well as two lysine mutants [(IGF-I(66-75)Lys(70)) and (IGF-II(63-72)Lys(67))]. Unlike PC1 and furin, rPC4A cleaved efficiently both IGF-I(66-75) and IGF-II(63-72), suggesting a possible role of PC4 in the maturation of IGF-I and -II. In contrast, the peptides with a position 2 (P2) lysine mutation, IGF-I(66-75)Lys(70) and IGF-II(63-72)Lys(67), were cleaved more efficiently by PC1 and furin compared with rPC4A. Furthermore, using synthetic peptides containing the processing sites of pituitary adenylate-cyclase-activating polypeptide (PACAP)-38, we were able to confirm that, of the two testicular enzymes PC4 and PC7, PC4 is the best candidate enzyme for maturation of PACAP. Our data suggest that rPC4A is a functionally active convertase, with a substrate specificity somewhat different from that of other convertases, namely KXXR downward arrow (where X denotes any other residue). As expected, p-chloromercuribenzoic acid and metal chelators such as EDTA, EGTA and trans-1,2-diaminocyclohexane-N,N,N', N'-tetraacetic acid inhibit the proteolytic activity of rPC4A, whereas it is activated by dithiothreitol. PC4A was also inhibited by transition-metal ions (Cu(2+)>Hg(2+)>Zn(2+) Ni(2+)>Co(2+)), as well as by small peptide semicarbazones (SCs), such as Arg-Lys-Lys-Arg-SC (K(i) 0.75 microM) and Arg-Ser-Lys-Arg-SC (K(i) 11.4 microM).

Full Text

The Full Text of this article is available as a PDF (194.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arimura A. Pituitary adenylate cyclase activating polypeptide (PACAP): discovery and current status of research. Regul Pept. 1992 Feb 18;37(3):287–303. [PubMed] [Google Scholar]
  2. Baker J., Liu J. P., Robertson E. J., Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell. 1993 Oct 8;75(1):73–82. [PubMed] [Google Scholar]
  3. Basak A., Boudreault A., Chen A., Chrétien M., Seidah N. G., Lazure C. Application of the multiple antigenic peptides (MAP) strategy to the production of prohormone convertases antibodies: synthesis, characterization and use of 8-branched immunogenic peptides. J Pept Sci. 1995 Nov-Dec;1(6):385–395. doi: 10.1002/psc.310010606. [DOI] [PubMed] [Google Scholar]
  4. Basak A., Jean F., Seidah N. G., Lazure C. Design and synthesis of novel inhibitors of prohormone convertases. Int J Pept Protein Res. 1994 Sep;44(3):253–261. doi: 10.1111/j.1399-3011.1994.tb00168.x. [DOI] [PubMed] [Google Scholar]
  5. Basak A., Schmidt C., Ismail A. A., Seidah N. G., Chrétien M., Lazure C. Peptidyl substrates containing unnatural amino acid at the P'1 position are potent inhibitors of prohormone convertases. Int J Pept Protein Res. 1995 Sep-Oct;46(3-4):228–237. doi: 10.1111/j.1399-3011.1995.tb00594.x. [DOI] [PubMed] [Google Scholar]
  6. Day R., Schafer M. K., Watson S. J., Chrétien M., Seidah N. G. Distribution and regulation of the prohormone convertases PC1 and PC2 in the rat pituitary. Mol Endocrinol. 1992 Mar;6(3):485–497. doi: 10.1210/mend.6.3.1316544. [DOI] [PubMed] [Google Scholar]
  7. De Strooper B., Creemers J. W., Moechars D., Huylebroeck D., Van De Ven W. J., Van Leuven F., Van den Berghe H. Amyloid precursor protein is not processed by furin, PACE 4, PC1/3, PC2, PC4 and PC5/6 of the furin family of proprotein processing enzymes. Biochim Biophys Acta. 1995 Jan 19;1246(2):185–188. doi: 10.1016/0167-4838(94)00194-l. [DOI] [PubMed] [Google Scholar]
  8. Dombrowicz D., Hooghe-Peters E. L., Gothot A., Sente B., Vanhaelst L., Closset J., Hennen G. Cellular localization of IGF-I and IGF-II mRNAs in immature hypophysectomized rat testis and epididymis after in vivo hormonal treatment. Arch Int Physiol Biochim Biophys. 1992 Sep-Oct;100(5):303–308. doi: 10.3109/13813459209000717. [DOI] [PubMed] [Google Scholar]
  9. Dong W., Marcinkiewicz M., Vieau D., Chrétien M., Seidah N. G., Day R. Distinct mRNA expression of the highly homologous convertases PC5 and PACE4 in the rat brain and pituitary. J Neurosci. 1995 Mar;15(3 Pt 1):1778–1796. doi: 10.1523/JNEUROSCI.15-03-01778.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Donnelly J. J., Ulmer J. B., Liu M. A. Immunization with DNA. J Immunol Methods. 1994 Dec 2;176(2):145–152. doi: 10.1016/0022-1759(94)90308-5. [DOI] [PubMed] [Google Scholar]
  11. Duguay S. J., Lai-Zhang J., Steiner D. F. Mutational analysis of the insulin-like growth factor I prohormone processing site. J Biol Chem. 1995 Jul 21;270(29):17566–17574. doi: 10.1074/jbc.270.29.17566. [DOI] [PubMed] [Google Scholar]
  12. Duguay S. J., Milewski W. M., Young B. D., Nakayama K., Steiner D. F. Processing of wild-type and mutant proinsulin-like growth factor-IA by subtilisin-related proprotein convertases. J Biol Chem. 1997 Mar 7;272(10):6663–6670. doi: 10.1074/jbc.272.10.6663. [DOI] [PubMed] [Google Scholar]
  13. Fuerst T. R., Niles E. G., Studier F. W., Moss B. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8122–8126. doi: 10.1073/pnas.83.21.8122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fuller R. S., Brake A. J., Thorner J. Intracellular targeting and structural conservation of a prohormone-processing endoprotease. Science. 1989 Oct 27;246(4929):482–486. doi: 10.1126/science.2683070. [DOI] [PubMed] [Google Scholar]
  15. Glazer A. N. The time-dependent specific interation of 4-(4'-aminophenylazo)phenylarsonic acid with subtilsins. Proc Natl Acad Sci U S A. 1968 Mar;59(3):996–1002. doi: 10.1073/pnas.59.3.996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hatsuzawa K., Nagahama M., Takahashi S., Takada K., Murakami K., Nakayama K. Purification and characterization of furin, a Kex2-like processing endoprotease, produced in Chinese hamster ovary cells. J Biol Chem. 1992 Aug 15;267(23):16094–16099. [PubMed] [Google Scholar]
  17. Jean F., Basak A., Rondeau N., Benjannet S., Hendy G. N., Seidah N. G., Chrétien M., Lazure C. Enzymic characterization of murine and human prohormone convertase-1 (mPC1 and hPC1) expressed in mammalian GH4C1 cells. Biochem J. 1993 Jun 15;292(Pt 3):891–900. doi: 10.1042/bj2920891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jean F., Boudreault A., Basak A., Seidah N. G., Lazure C. Fluorescent peptidyl substrates as an aid in studying the substrate specificity of human prohormone convertase PC1 and human furin and designing a potent irreversible inhibitor. J Biol Chem. 1995 Aug 18;270(33):19225–19231. doi: 10.1074/jbc.270.33.19225. [DOI] [PubMed] [Google Scholar]
  19. Li M., Nakayama K., Shuto Y., Somogyvari-Vigh A., Arimura A. Testis-specific prohormone convertase PC4 processes the precursor of pituitary adenylate cyclase-activating polypeptide (PACAP). Peptides. 1998;19(2):259–268. doi: 10.1016/s0196-9781(97)00293-3. [DOI] [PubMed] [Google Scholar]
  20. Liu J. P., Baker J., Perkins A. S., Robertson E. J., Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell. 1993 Oct 8;75(1):59–72. [PubMed] [Google Scholar]
  21. Macaulay V. M. Insulin-like growth factors and cancer. Br J Cancer. 1992 Mar;65(3):311–320. doi: 10.1038/bjc.1992.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Marcinkiewicz M., Ramla D., Seidah N. G., Chrétien M. Developmental expression of the prohormone convertases PC1 and PC2 in mouse pancreatic islets. Endocrinology. 1994 Oct;135(4):1651–1660. doi: 10.1210/endo.135.4.7925129. [DOI] [PubMed] [Google Scholar]
  23. Mbikay M., Raffin-Sanson M. L., Tadros H., Sirois F., Seidah N. G., Chretien M. Structure of the gene for the testis-specific proprotein convertase 4 and of its alternate messenger RNA isoforms. Genomics. 1994 Mar 15;20(2):231–237. doi: 10.1006/geno.1994.1158. [DOI] [PubMed] [Google Scholar]
  24. Mbikay M., Seidah N. G., Chrétien M., Simpson E. M. Chromosomal assignment of the genes for proprotein convertases PC4, PC5, and PACE 4 in mouse and human. Genomics. 1995 Mar 1;26(1):123–129. doi: 10.1016/0888-7543(95)80090-9. [DOI] [PubMed] [Google Scholar]
  25. Mbikay M., Tadros H., Ishida N., Lerner C. P., De Lamirande E., Chen A., El-Alfy M., Clermont Y., Seidah N. G., Chrétien M. Impaired fertility in mice deficient for the testicular germ-cell protease PC4. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6842–6846. doi: 10.1073/pnas.94.13.6842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Miyata A., Arimura A., Dahl R. R., Minamino N., Uehara A., Jiang L., Culler M. D., Coy D. H. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun. 1989 Oct 16;164(1):567–574. doi: 10.1016/0006-291x(89)91757-9. [DOI] [PubMed] [Google Scholar]
  27. Molloy S. S., Bresnahan P. A., Leppla S. H., Klimpel K. R., Thomas G. Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen. J Biol Chem. 1992 Aug 15;267(23):16396–16402. [PubMed] [Google Scholar]
  28. Moore A., Chen C. L., Davis J. R., Morris I. D. Insulin-like growth factor-I mRNA expression in the interstitial cells of the rat testis. J Mol Endocrinol. 1993 Dec;11(3):319–324. doi: 10.1677/jme.0.0110319. [DOI] [PubMed] [Google Scholar]
  29. Moss B., Elroy-Stein O., Mizukami T., Alexander W. A., Fuerst T. R. Product review. New mammalian expression vectors. Nature. 1990 Nov 1;348(6296):91–92. doi: 10.1038/348091a0. [DOI] [PubMed] [Google Scholar]
  30. Munzer J. S., Basak A., Zhong M., Mamarbachi A., Hamelin J., Savaria D., Lazure C., Hendy G. N., Benjannet S., Chrétien M. In vitro characterization of the novel proprotein convertase PC7. J Biol Chem. 1997 Aug 8;272(32):19672–19681. doi: 10.1074/jbc.272.32.19672. [DOI] [PubMed] [Google Scholar]
  31. Nakayama K., Kim W. S., Torii S., Hosaka M., Nakagawa T., Ikemizu J., Baba T., Murakami K. Identification of the fourth member of the mammalian endoprotease family homologous to the yeast Kex2 protease. Its testis-specific expression. J Biol Chem. 1992 Mar 25;267(9):5897–5900. [PubMed] [Google Scholar]
  32. Rinderknecht E., Humbel R. E. Primary structure of human insulin-like growth factor II. FEBS Lett. 1978 May 15;89(2):283–286. doi: 10.1016/0014-5793(78)80237-3. [DOI] [PubMed] [Google Scholar]
  33. Rinderknecht E., Humbel R. E. The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem. 1978 Apr 25;253(8):2769–2776. [PubMed] [Google Scholar]
  34. Seidah N. G., Chrétien M. Eukaryotic protein processing: endoproteolysis of precursor proteins. Curr Opin Biotechnol. 1997 Oct;8(5):602–607. doi: 10.1016/s0958-1669(97)80036-5. [DOI] [PubMed] [Google Scholar]
  35. Seidah N. G., Day R., Hamelin J., Gaspar A., Collard M. W., Chrétien M. Testicular expression of PC4 in the rat: molecular diversity of a novel germ cell-specific Kex2/subtilisin-like proprotein convertase. Mol Endocrinol. 1992 Oct;6(10):1559–1570. doi: 10.1210/mend.6.10.1448111. [DOI] [PubMed] [Google Scholar]
  36. Seidah N. G., Hamelin J., Gaspar A. M., Day R., Chrétien M. The cDNA sequence of the human pro-hormone and pro-protein convertase PC1. DNA Cell Biol. 1992 May;11(4):283–289. doi: 10.1089/dna.1992.11.283. [DOI] [PubMed] [Google Scholar]
  37. Steiner D. F. The proprotein convertases. Curr Opin Chem Biol. 1998 Feb;2(1):31–39. doi: 10.1016/s1367-5931(98)80033-1. [DOI] [PubMed] [Google Scholar]
  38. Torii S., Yamagishi T., Murakami K., Nakayama K. Localization of Kex2-like processing endoproteases, furin and PC4, within mouse testis by in situ hybridization. FEBS Lett. 1993 Jan 18;316(1):12–16. doi: 10.1016/0014-5793(93)81726-g. [DOI] [PubMed] [Google Scholar]
  39. Vidricaire G., Denault J. B., Leduc R. Characterization of a secreted form of human furin endoprotease. Biochem Biophys Res Commun. 1993 Sep 15;195(2):1011–1018. doi: 10.1006/bbrc.1993.2145. [DOI] [PubMed] [Google Scholar]
  40. Wang D., Nagpal M. L., Lin T., Shimasaki S., Ling N. Insulin-like growth factor-binding protein-2: the effect of human chorionic gonadotropin on its gene regulation and protein secretion and its biological effects in rat Leydig cells. Mol Endocrinol. 1994 Jan;8(1):69–76. doi: 10.1210/mend.8.1.7512196. [DOI] [PubMed] [Google Scholar]
  41. Zhou Y., Lindberg I. Purification and characterization of the prohormone convertase PC1(PC3). J Biol Chem. 1993 Mar 15;268(8):5615–5623. [PubMed] [Google Scholar]