Definition of Munc13-homology-domains and characterization of a novel ubiquitously expressed Munc13 isoform (original) (raw)
Abstract
Munc13 proteins constitute a family of three highly homologous molecules (Munc13-1, Munc13-2 and Munc13-3). With the exception of a ubiquitously expressed Munc13-2 splice variant, Munc13 proteins are brain-specific. Munc13-1 has a central priming function in synaptic vesicle exocytosis from glutamatergic synapses. In order to identify Munc13-like proteins that may regulate secretory processes in non-glutamatergic neurons or non-neuronal cells, we developed protein profiles for two Munc13-homology-domains (MHDs). MHDs are present in a wide variety of proteins, some of which have previously been implicated in membrane trafficking reactions. Taking advantage of partial sequences in the human expressed sequence tag (EST) database, we characterized a novel, ubiquitously expressed, rat protein (Munc13-4) that belongs to a subfamily of Munc13-like molecules, in which the typical Munc13-like domain structure is conserved. Munc13-4 is predominantly expressed in lung where it is localized to goblet cells of the bronchial epithelium and to alveolar type II cells, both of which are cell types with secretory function. In the present study we identify a group of novel proteins, some of which may function in a Munc13-like manner to regulate membrane trafficking. The MHD profiles described in the present study are useful tools for the identification of Munc13-like proteins, that would otherwise have remained undetected.
Full Text
The Full Text of this article is available as a PDF (425.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ann K., Kowalchyk J. A., Loyet K. M., Martin T. F. Novel Ca2+-binding protein (CAPS) related to UNC-31 required for Ca2+-activated exocytosis. J Biol Chem. 1997 Aug 8;272(32):19637–19640. doi: 10.1074/jbc.272.32.19637. [DOI] [PubMed] [Google Scholar]
- Aravamudan B., Fergestad T., Davis W. S., Rodesch C. K., Broadie K. Drosophila UNC-13 is essential for synaptic transmission. Nat Neurosci. 1999 Nov;2(11):965–971. doi: 10.1038/14764. [DOI] [PubMed] [Google Scholar]
- Augustin I., Betz A., Herrmann C., Jo T., Brose N. Differential expression of two novel Munc13 proteins in rat brain. Biochem J. 1999 Feb 1;337(Pt 3):363–371. [PMC free article] [PubMed] [Google Scholar]
- Augustin I., Rosenmund C., Südhof T. C., Brose N. Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature. 1999 Jul 29;400(6743):457–461. doi: 10.1038/22768. [DOI] [PubMed] [Google Scholar]
- Benson D. A., Boguski M., Lipman D. J., Ostell J. GenBank. Nucleic Acids Res. 1994 Sep;22(17):3441–3444. doi: 10.1093/nar/22.17.3441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berwin B., Floor E., Martin T. F. CAPS (mammalian UNC-31) protein localizes to membranes involved in dense-core vesicle exocytosis. Neuron. 1998 Jul;21(1):137–145. doi: 10.1016/s0896-6273(00)80521-8. [DOI] [PubMed] [Google Scholar]
- Betz A., Ashery U., Rickmann M., Augustin I., Neher E., Südhof T. C., Rettig J., Brose N. Munc13-1 is a presynaptic phorbol ester receptor that enhances neurotransmitter release. Neuron. 1998 Jul;21(1):123–136. doi: 10.1016/s0896-6273(00)80520-6. [DOI] [PubMed] [Google Scholar]
- Betz A., Okamoto M., Benseler F., Brose N. Direct interaction of the rat unc-13 homologue Munc13-1 with the N terminus of syntaxin. J Biol Chem. 1997 Jan 24;272(4):2520–2526. doi: 10.1074/jbc.272.4.2520. [DOI] [PubMed] [Google Scholar]
- Brose N., Hofmann K., Hata Y., Südhof T. C. Mammalian homologues of Caenorhabditis elegans unc-13 gene define novel family of C2-domain proteins. J Biol Chem. 1995 Oct 20;270(42):25273–25280. doi: 10.1074/jbc.270.42.25273. [DOI] [PubMed] [Google Scholar]
- Brose N., Thomas A., Weber M. G., Jahn R. A chloride- and calcium-dependent glutamate-binding protein from rat brain. Identification as a ubiquitous constituent of the inner mitochondrial membrane. J Biol Chem. 1990 Jun 25;265(18):10604–10610. [PubMed] [Google Scholar]
- Bucher P., Karplus K., Moeri N., Hofmann K. A flexible motif search technique based on generalized profiles. Comput Chem. 1996 Mar;20(1):3–23. doi: 10.1016/s0097-8485(96)80003-9. [DOI] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guan K. L., Dixon J. E. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal Biochem. 1991 Feb 1;192(2):262–267. doi: 10.1016/0003-2697(91)90534-z. [DOI] [PubMed] [Google Scholar]
- Henikoff S., Henikoff J. G. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10915–10919. doi: 10.1073/pnas.89.22.10915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krasnoperov V. G., Bittner M. A., Beavis R., Kuang Y., Salnikow K. V., Chepurny O. G., Little A. R., Plotnikov A. N., Wu D., Holz R. W. alpha-Latrotoxin stimulates exocytosis by the interaction with a neuronal G-protein-coupled receptor. Neuron. 1997 Jun;18(6):925–937. doi: 10.1016/s0896-6273(00)80332-3. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lelianova V. G., Davletov B. A., Sterling A., Rahman M. A., Grishin E. V., Totty N. F., Ushkaryov Y. A. Alpha-latrotoxin receptor, latrophilin, is a novel member of the secretin family of G protein-coupled receptors. J Biol Chem. 1997 Aug 22;272(34):21504–21508. doi: 10.1074/jbc.272.34.21504. [DOI] [PubMed] [Google Scholar]
- Martin T. F. Mechanisms of protein secretion in endocrine and exocrine cells. Vitam Horm. 1998;54:207–226. doi: 10.1016/s0083-6729(08)60926-7. [DOI] [PubMed] [Google Scholar]
- Orita S., Naito A., Sakaguchi G., Maeda M., Igarashi H., Sasaki T., Takai Y. Physical and functional interactions of Doc2 and Munc13 in Ca2+-dependent exocytotic machinery. J Biol Chem. 1997 Jun 27;272(26):16081–16084. doi: 10.1074/jbc.272.26.16081. [DOI] [PubMed] [Google Scholar]
- Richmond J. E., Davis W. S., Jorgensen E. M. UNC-13 is required for synaptic vesicle fusion in C. elegans. Nat Neurosci. 1999 Nov;2(11):959–964. doi: 10.1038/14755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shiratsuchi T., Oda K., Nishimori H., Suzuki M., Takahashi E., Tokino T., Nakamura Y. Cloning and characterization of BAP3 (BAI-associated protein 3), a C2 domain-containing protein that interacts with BAI1. Biochem Biophys Res Commun. 1998 Oct 9;251(1):158–165. doi: 10.1006/bbrc.1998.9408. [DOI] [PubMed] [Google Scholar]
- Song Y., Ailenberg M., Silverman M. Cloning of a novel gene in the human kidney homologous to rat munc13s: its potential role in diabetic nephropathy. Kidney Int. 1998 Jun;53(6):1689–1695. doi: 10.1046/j.1523-1755.1998.00942.x. [DOI] [PubMed] [Google Scholar]
- Tandon A., Bannykh S., Kowalchyk J. A., Banerjee A., Martin T. F., Balch W. E. Differential regulation of exocytosis by calcium and CAPS in semi-intact synaptosomes. Neuron. 1998 Jul;21(1):147–154. doi: 10.1016/s0896-6273(00)80522-x. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]