Identification of multiple proteins expressed in murine embryos as binding partners for the WW domains of the ubiquitin-protein ligase Nedd4 (original) (raw)

. 2000 Nov 1;351(Pt 3):557–565.

Abstract

Nedd4 is a member of a growing family of ubiquitin-protein ligases which consist of a lipid-binding domain, two to four WW domains and a C-terminal ubiquitin-protein ligase domain. The Nedd4 mRNA levels are developmentally regulated and Nedd4 protein is highly expressed in many mouse embryonic tissues. In this study we have used a far-Western screen to identify embryonic proteins that interact with the WW domains in mouse Nedd4. We report here identification of eight Nedd4 WW-domain-interacting proteins from mouse embryonic cDNA expression libraries. Two of the proteins are novel, while two have been identified previously as ligands for a WW domain. All of these proteins contain one or more PY motifs. In seven of the eight proteins, these PY motifs are necessary for their interaction with the WW domains of Nedd4. Using site-directed mutagenesis, and by using individual WW domains of Nedd4 as probes for far-Western analysis, we show that the three WW domains in Nedd4 interact with varying affinities with the PY motifs present in various Nedd4-binding proteins. These results provide evidence that Nedd4 can potentially interact with multiple proteins, possibly simultaneously, through its WW domains.

Full Text

The Full Text of this article is available as a PDF (316.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bedford M. T., Chan D. C., Leder P. FBP WW domains and the Abl SH3 domain bind to a specific class of proline-rich ligands. EMBO J. 1997 May 1;16(9):2376–2383. doi: 10.1093/emboj/16.9.2376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bedford M. T., Sarbassova D., Xu J., Leder P., Yaffe M. B. A novel pro-Arg motif recognized by WW domains. J Biol Chem. 2000 Apr 7;275(14):10359–10369. doi: 10.1074/jbc.275.14.10359. [DOI] [PubMed] [Google Scholar]
  3. Chen H. I., Sudol M. The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7819–7823. doi: 10.1073/pnas.92.17.7819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ciechanover A., Orian A., Schwartz A. L. Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays. 2000 May;22(5):442–451. doi: 10.1002/(SICI)1521-1878(200005)22:5<442::AID-BIES6>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  5. Dinudom A., Harvey K. F., Komwatana P., Young J. A., Kumar S., Cook D. I. Nedd4 mediates control of an epithelial Na+ channel in salivary duct cells by cytosolic Na+. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):7169–7173. doi: 10.1073/pnas.95.12.7169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Espanel X., Sudol M. A single point mutation in a group I WW domain shifts its specificity to that of group II WW domains. J Biol Chem. 1999 Jun 11;274(24):17284–17289. doi: 10.1074/jbc.274.24.17284. [DOI] [PubMed] [Google Scholar]
  7. Everett L. M., Li A., Devaraju G., Caperell-Grant A., Bigsby R. M. A novel estrogen-enhanced transcript identified in the rat uterus by differential display. Endocrinology. 1997 Sep;138(9):3836–3841. doi: 10.1210/endo.138.9.5384. [DOI] [PubMed] [Google Scholar]
  8. Farr T. J., Coddington-Lawson S. J., Snyder P. M., McDonald F. J. Human Nedd4 interacts with the human epithelial Na+ channel: WW3 but not WW1 binds to Na+-channel subunits. Biochem J. 2000 Feb 1;345(Pt 3):503–509. [PMC free article] [PubMed] [Google Scholar]
  9. Gavva N. R., Gavva R., Ermekova K., Sudol M., Shen C. J. Interaction of WW domains with hematopoietic transcription factor p45/NF-E2 and RNA polymerase II. J Biol Chem. 1997 Sep 26;272(39):24105–24108. doi: 10.1074/jbc.272.39.24105. [DOI] [PubMed] [Google Scholar]
  10. Goulet C. C., Volk K. A., Adams C. M., Prince L. S., Stokes J. B., Snyder P. M. Inhibition of the epithelial Na+ channel by interaction of Nedd4 with a PY motif deleted in Liddle's syndrome. J Biol Chem. 1998 Nov 6;273(45):30012–30017. doi: 10.1074/jbc.273.45.30012. [DOI] [PubMed] [Google Scholar]
  11. Harvey K. F., Dinudom A., Komwatana P., Jolliffe C. N., Day M. L., Parasivam G., Cook D. I., Kumar S. All three WW domains of murine Nedd4 are involved in the regulation of epithelial sodium channels by intracellular Na+. J Biol Chem. 1999 Apr 30;274(18):12525–12530. doi: 10.1074/jbc.274.18.12525. [DOI] [PubMed] [Google Scholar]
  12. Harvey K. F., Kumar S. Nedd4-like proteins: an emerging family of ubiquitin-protein ligases implicated in diverse cellular functions. Trends Cell Biol. 1999 May;9(5):166–169. doi: 10.1016/s0962-8924(99)01541-x. [DOI] [PubMed] [Google Scholar]
  13. Hicke L. Gettin' down with ubiquitin: turning off cell-surface receptors, transporters and channels. Trends Cell Biol. 1999 Mar;9(3):107–112. doi: 10.1016/s0962-8924(98)01491-3. [DOI] [PubMed] [Google Scholar]
  14. Huibregtse J. M., Scheffner M., Howley P. M. A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J. 1991 Dec;10(13):4129–4135. doi: 10.1002/j.1460-2075.1991.tb04990.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ikeda M., Ikeda A., Longan L. C., Longnecker R. The Epstein-Barr virus latent membrane protein 2A PY motif recruits WW domain-containing ubiquitin-protein ligases. Virology. 2000 Mar 1;268(1):178–191. doi: 10.1006/viro.1999.0166. [DOI] [PubMed] [Google Scholar]
  16. Imhof M. O., McDonnell D. P. Yeast RSP5 and its human homolog hRPF1 potentiate hormone-dependent activation of transcription by human progesterone and glucocorticoid receptors. Mol Cell Biol. 1996 Jun;16(6):2594–2605. doi: 10.1128/mcb.16.6.2594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kaelin W. G., Jr, Krek W., Sellers W. R., DeCaprio J. A., Ajchenbaum F., Fuchs C. S., Chittenden T., Li Y., Farnham P. J., Blanar M. A. Expression cloning of a cDNA encoding a retinoblastoma-binding protein with E2F-like properties. Cell. 1992 Jul 24;70(2):351–364. doi: 10.1016/0092-8674(92)90108-o. [DOI] [PubMed] [Google Scholar]
  18. Kinoshita M., Kumar S., Mizoguchi A., Ide C., Kinoshita A., Haraguchi T., Hiraoka Y., Noda M. Nedd5, a mammalian septin, is a novel cytoskeletal component interacting with actin-based structures. Genes Dev. 1997 Jun 15;11(12):1535–1547. doi: 10.1101/gad.11.12.1535. [DOI] [PubMed] [Google Scholar]
  19. Komuro A., Saeki M., Kato S. Association of two nuclear proteins, Npw38 and NpwBP, via the interaction between the WW domain and a novel proline-rich motif containing glycine and arginine. J Biol Chem. 1999 Dec 17;274(51):36513–36519. doi: 10.1074/jbc.274.51.36513. [DOI] [PubMed] [Google Scholar]
  20. Kulman J. D., Harris J. E., Haldeman B. A., Davie E. W. Primary structure and tissue distribution of two novel proline-rich gamma-carboxyglutamic acid proteins. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9058–9062. doi: 10.1073/pnas.94.17.9058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kumar S., Harvey K. F., Kinoshita M., Copeland N. G., Noda M., Jenkins N. A. cDNA cloning, expression analysis, and mapping of the mouse Nedd4 gene. Genomics. 1997 Mar 15;40(3):435–443. doi: 10.1006/geno.1996.4582. [DOI] [PubMed] [Google Scholar]
  22. Kumar S., Kinoshita M., Noda M., Copeland N. G., Jenkins N. A. Induction of apoptosis by the mouse Nedd2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell death gene ced-3 and the mammalian IL-1 beta-converting enzyme. Genes Dev. 1994 Jul 15;8(14):1613–1626. doi: 10.1101/gad.8.14.1613. [DOI] [PubMed] [Google Scholar]
  23. Kumar S., Tomooka Y., Noda M. Identification of a set of genes with developmentally down-regulated expression in the mouse brain. Biochem Biophys Res Commun. 1992 Jun 30;185(3):1155–1161. doi: 10.1016/0006-291x(92)91747-e. [DOI] [PubMed] [Google Scholar]
  24. Lu P. J., Zhou X. Z., Shen M., Lu K. P. Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science. 1999 Feb 26;283(5406):1325–1328. doi: 10.1126/science.283.5406.1325. [DOI] [PubMed] [Google Scholar]
  25. Macias M. J., Hyvönen M., Baraldi E., Schultz J., Sudol M., Saraste M., Oschkinat H. Structure of the WW domain of a kinase-associated protein complexed with a proline-rich peptide. Nature. 1996 Aug 15;382(6592):646–649. doi: 10.1038/382646a0. [DOI] [PubMed] [Google Scholar]
  26. Mosser E. A., Kasanov J. D., Forsberg E. C., Kay B. K., Ney P. A., Bresnick E. H. Physical and functional interactions between the transactivation domain of the hematopoietic transcription factor NF-E2 and WW domains. Biochemistry. 1998 Sep 29;37(39):13686–13695. doi: 10.1021/bi981310l. [DOI] [PubMed] [Google Scholar]
  27. Myokai F., Takashiba S., Lebo R., Amar S. A novel lipopolysaccharide-induced transcription factor regulating tumor necrosis factor alpha gene expression: molecular cloning, sequencing, characterization, and chromosomal assignment. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4518–4523. doi: 10.1073/pnas.96.8.4518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pirozzi G., McConnell S. J., Uveges A. J., Carter J. M., Sparks A. B., Kay B. K., Fowlkes D. M. Identification of novel human WW domain-containing proteins by cloning of ligand targets. J Biol Chem. 1997 Jun 6;272(23):14611–14616. doi: 10.1074/jbc.272.23.14611. [DOI] [PubMed] [Google Scholar]
  29. Polyak K., Xia Y., Zweier J. L., Kinzler K. W., Vogelstein B. A model for p53-induced apoptosis. Nature. 1997 Sep 18;389(6648):300–305. doi: 10.1038/38525. [DOI] [PubMed] [Google Scholar]
  30. Scheffner M., Nuber U., Huibregtse J. M. Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature. 1995 Jan 5;373(6509):81–83. doi: 10.1038/373081a0. [DOI] [PubMed] [Google Scholar]
  31. Schild L., Lu Y., Gautschi I., Schneeberger E., Lifton R. P., Rossier B. C. Identification of a PY motif in the epithelial Na channel subunits as a target sequence for mutations causing channel activation found in Liddle syndrome. EMBO J. 1996 May 15;15(10):2381–2387. [PMC free article] [PubMed] [Google Scholar]
  32. Seki N., Hattori A., Hayashi A., Kozuma S., Sasaki M., Suzuki Y., Sugano S., Muramatsu M. A., Saito T. Cloning and expression profile of mouse and human genes, Rnf11/RNF11, encoding a novel RING-H2 finger protein. Biochim Biophys Acta. 1999 Dec 23;1489(2-3):421–427. doi: 10.1016/s0167-4781(99)00190-6. [DOI] [PubMed] [Google Scholar]
  33. Staub O., Abriel H., Plant P., Ishikawa T., Kanelis V., Saleki R., Horisberger J. D., Schild L., Rotin D. Regulation of the epithelial Na+ channel by Nedd4 and ubiquitination. Kidney Int. 2000 Mar;57(3):809–815. doi: 10.1046/j.1523-1755.2000.00919.x. [DOI] [PubMed] [Google Scholar]
  34. Staub O., Dho S., Henry P., Correa J., Ishikawa T., McGlade J., Rotin D. WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle's syndrome. EMBO J. 1996 May 15;15(10):2371–2380. [PMC free article] [PubMed] [Google Scholar]
  35. Staub O., Gautschi I., Ishikawa T., Breitschopf K., Ciechanover A., Schild L., Rotin D. Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination. EMBO J. 1997 Nov 3;16(21):6325–6336. doi: 10.1093/emboj/16.21.6325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sudol M. The WW module competes with the SH3 domain? Trends Biochem Sci. 1996 May;21(5):161–163. [PubMed] [Google Scholar]
  37. Yoshikawa T., Sanders A. R., Esterling L. E., Detera-Wadleigh S. D. Multiple transcriptional variants and RNA editing in C18orf1, a novel gene with LDLRA and transmembrane domains on 18p11.2. Genomics. 1998 Jan 15;47(2):246–257. doi: 10.1006/geno.1997.5118. [DOI] [PubMed] [Google Scholar]