Changes in intracellular calpastatin localization are mediated by reversible phosphorylation (original) (raw)

Abstract

We have previously reported that, in neuroblastoma LAN-5 cells, calpastatin is in an aggregated state, close to the cell nucleus [de Tullio, Passalacqua, Averna, Salamino, Melloni and Pontremoli (1999) Biochem. J. 343, 467-472]. In the present paper, we demonstrate that aggregated calpastatin is predominantly in a phosphorylated state. An increase in intracellular free [Ca2+] induces both dephosphorylation of calpastatin, through the action of a phosphoprotein phosphatase, and its redistribution as a soluble inhibitor species. cAMP, but not PMA-induced phosphorylation, reverses calpastatin distribution favouring its aggregation. This intracellular reversible mechanism, regulating the level of cytosolic calpastatin, could be considered a strategy through which calpain can escape calpastatin inhibition, especially during earlier steps of its activation process.

Full Text

The Full Text of this article is available as a PDF (261.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Averna M., De Tullio R., Salamino F., Melloni E., Pontremoli S. Phosphorylation of rat brain calpastatins by protein kinase C. FEBS Lett. 1999 Apr 30;450(1-2):13–16. doi: 10.1016/s0014-5793(99)00461-5. [DOI] [PubMed] [Google Scholar]
  2. Balcerzak D., Poussard S., Brustis J. J., Elamrani N., Soriano M., Cottin P., Ducastaing A. An antisense oligodeoxyribonucleotide to m-calpain mRNA inhibits myoblast fusion. J Cell Sci. 1995 May;108(Pt 5):2077–2082. doi: 10.1242/jcs.108.5.2077. [DOI] [PubMed] [Google Scholar]
  3. Chi X. J., Hiwasa T., Maki M., Sugaya S., Nomura J., Kita K., Suzuki N. Suppression of okadaic acid-induced apoptosis by overexpression of calpastatin in human UV(r)-1 cells. FEBS Lett. 1999 Oct 15;459(3):391–394. doi: 10.1016/s0014-5793(99)01281-8. [DOI] [PubMed] [Google Scholar]
  4. Cong M., Thompson V. F., Goll D. E., Antin P. B. The bovine calpastatin gene promoter and a new N-terminal region of the protein are targets for cAMP-dependent protein kinase activity. J Biol Chem. 1998 Jan 2;273(1):660–666. doi: 10.1074/jbc.273.1.660. [DOI] [PubMed] [Google Scholar]
  5. Croall D. E., McGrody K. S. Domain structure of calpain: mapping the binding site for calpastatin. Biochemistry. 1994 Nov 15;33(45):13223–13230. doi: 10.1021/bi00249a008. [DOI] [PubMed] [Google Scholar]
  6. De Tullio R., Passalacqua M., Averna M., Salamino F., Melloni E., Pontremoli S. Changes in intracellular localization of calpastatin during calpain activation. Biochem J. 1999 Oct 15;343(Pt 2):467–472. [PMC free article] [PubMed] [Google Scholar]
  7. De Tullio R., Sparatore B., Salamino F., Melloni E., Pontremoli S. Rat brain contains multiple mRNAs for calpastatin. FEBS Lett. 1998 Jan 23;422(1):113–117. doi: 10.1016/s0014-5793(97)01588-3. [DOI] [PubMed] [Google Scholar]
  8. Emori Y., Kawasaki H., Imajoh S., Imahori K., Suzuki K. Endogenous inhibitor for calcium-dependent cysteine protease contains four internal repeats that could be responsible for its multiple reactive sites. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3590–3594. doi: 10.1073/pnas.84.11.3590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Giasson B. I., Bruening W., Durham H. D., Mushynski W. E. Activation of stress-activated protein kinases correlates with neurite outgrowth induced by protease inhibition in PC12 cells. J Neurochem. 1999 Mar;72(3):1081–1087. doi: 10.1046/j.1471-4159.1999.0721081.x. [DOI] [PubMed] [Google Scholar]
  10. Goll D. E., Thompson V. F., Taylor R. G., Zalewska T. Is calpain activity regulated by membranes and autolysis or by calcium and calpastatin? Bioessays. 1992 Aug;14(8):549–556. doi: 10.1002/bies.950140810. [DOI] [PubMed] [Google Scholar]
  11. Ishida S., Emori Y., Suzuki K. Rat calpastatin has diverged primary sequence from other mammalian calpastatins but retains functionally important sequences. Biochim Biophys Acta. 1991 Mar 26;1088(3):436–438. doi: 10.1016/0167-4781(91)90139-d. [DOI] [PubMed] [Google Scholar]
  12. Kawasaki H., Emori Y., Imajoh-Ohmi S., Minami Y., Suzuki K. Identification and characterization of inhibitory sequences in four repeating domains of the endogenous inhibitor for calcium-dependent protease. J Biochem. 1989 Aug;106(2):274–281. doi: 10.1093/oxfordjournals.jbchem.a122844. [DOI] [PubMed] [Google Scholar]
  13. Kinbara K., Sorimachi H., Ishiura S., Suzuki K. Skeletal muscle-specific calpain, p49: structure and physiological function. Biochem Pharmacol. 1998 Aug 15;56(4):415–420. doi: 10.1016/s0006-2952(98)00095-1. [DOI] [PubMed] [Google Scholar]
  14. Kulkarni S., Saido T. C., Suzuki K., Fox J. E. Calpain mediates integrin-induced signaling at a point upstream of Rho family members. J Biol Chem. 1999 Jul 23;274(30):21265–21275. doi: 10.1074/jbc.274.30.21265. [DOI] [PubMed] [Google Scholar]
  15. Lee W. J., Ma H., Takano E., Yang H. Q., Hatanaka M., Maki M. Molecular diversity in amino-terminal domains of human calpastatin by exon skipping. J Biol Chem. 1992 Apr 25;267(12):8437–8442. [PubMed] [Google Scholar]
  16. Ma H., Yang H. Q., Takano E., Hatanaka M., Maki M. Amino-terminal conserved region in proteinase inhibitor domain of calpastatin potentiates its calpain inhibitory activity by interacting with calmodulin-like domain of the proteinase. J Biol Chem. 1994 Sep 30;269(39):24430–24436. [PubMed] [Google Scholar]
  17. Melloni E., De Tullio R., Averna M., Tedesco I., Salamino F., Sparatore B., Pontremoli S. Properties of calpastatin forms in rat brain. FEBS Lett. 1998 Jul 10;431(1):55–58. doi: 10.1016/s0014-5793(98)00724-8. [DOI] [PubMed] [Google Scholar]
  18. Melloni E., Michetti M., Salamino F., Minafra R., Pontremoli S. Modulation of the calpain autoproteolysis by calpastatin and phospholipids. Biochem Biophys Res Commun. 1996 Dec 4;229(1):193–197. doi: 10.1006/bbrc.1996.1779. [DOI] [PubMed] [Google Scholar]
  19. Michetti M., Salamino F., Tedesco I., Averna M., Minafra R., Melloni E., Pontremoli S. Autolysis of human erythrocyte calpain produces two active enzyme forms with different cell localization. FEBS Lett. 1996 Aug 19;392(1):11–15. doi: 10.1016/0014-5793(96)00775-2. [DOI] [PubMed] [Google Scholar]
  20. Murachi T., Tanaka K., Hatanaka M., Murakami T. Intracellular Ca2+-dependent protease (calpain) and its high-molecular-weight endogenous inhibitor (calpastatin). Adv Enzyme Regul. 1980;19:407–424. doi: 10.1016/0065-2571(81)90026-1. [DOI] [PubMed] [Google Scholar]
  21. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
  22. Nixon R. A., Saito K. I., Grynspan F., Griffin W. R., Katayama S., Honda T., Mohan P. S., Shea T. B., Beermann M. Calcium-activated neutral proteinase (calpain) system in aging and Alzheimer's disease. Ann N Y Acad Sci. 1994 Dec 15;747:77–91. doi: 10.1111/j.1749-6632.1994.tb44402.x. [DOI] [PubMed] [Google Scholar]
  23. Palejwala S., Goldsmith L. T. Ovarian expression of cellular Ki-ras p21 varies with physiological status. Proc Natl Acad Sci U S A. 1992 May 1;89(9):4202–4206. doi: 10.1073/pnas.89.9.4202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Passalacqua M., Patrone M., Picotti G. B., Del Rio M., Sparatore B., Melloni E., Pontremoli S. Stimulated astrocytes release high-mobility group 1 protein, an inducer of LAN-5 neuroblastoma cell differentiation. Neuroscience. 1998 Feb;82(4):1021–1028. doi: 10.1016/s0306-4522(97)00352-7. [DOI] [PubMed] [Google Scholar]
  25. Pontremoli S., Melloni E., Viotti P. L., Michetti M., Salamino F., Horecker B. L. Identification of two calpastatin forms in rat skeletal muscle and their susceptibility to digestion by homologous calpains. Arch Biochem Biophys. 1991 Aug 1;288(2):646–652. doi: 10.1016/0003-9861(91)90247-g. [DOI] [PubMed] [Google Scholar]
  26. Renzi L., Gersch M. S., Campbell M. S., Wu L., Osmani S. A., Gorbsky G. J. MPM-2 antibody-reactive phosphorylations can be created in detergent-extracted cells by kinetochore-bound and soluble kinases. J Cell Sci. 1997 Sep;110(Pt 17):2013–2025. doi: 10.1242/jcs.110.17.2013. [DOI] [PubMed] [Google Scholar]
  27. Salamino F., Averna M., Tedesco I., De Tullio R., Melloni E., Pontremoli S. Modulation of rat brain calpastatin efficiency by post-translational modifications. FEBS Lett. 1997 Aug 4;412(3):433–438. doi: 10.1016/s0014-5793(97)00819-3. [DOI] [PubMed] [Google Scholar]
  28. Salamino F., De Tullio R., Michetti M., Mengotti P., Melloni E., Pontremoli S. Modulation of calpastatin specificity in rat tissues by reversible phosphorylation and dephosphorylation. Biochem Biophys Res Commun. 1994 Mar 30;199(3):1326–1332. doi: 10.1006/bbrc.1994.1376. [DOI] [PubMed] [Google Scholar]
  29. Sorimachi H., Ishiura S., Suzuki K. A novel tissue-specific calpain species expressed predominantly in the stomach comprises two alternative splicing products with and without Ca(2+)-binding domain. J Biol Chem. 1993 Sep 15;268(26):19476–19482. [PubMed] [Google Scholar]
  30. Takano J., Kawamura T., Murase M., Hitomi K., Maki M. Structure of mouse calpastatin isoforms: implications of species-common and species-specific alternative splicing. Biochem Biophys Res Commun. 1999 Jul 5;260(2):339–345. doi: 10.1006/bbrc.1999.0903. [DOI] [PubMed] [Google Scholar]