Distinct roles for extracellular-signal-regulated protein kinase (ERK) mitogen-activated protein kinases and phosphatidylinositol 3-kinase in the regulation of Mcl-1 synthesis (original) (raw)

Abstract

Alterations in the expression of various Bcl-2 family members may act as one means by which a cell's survival may be regulated. The mechanism by which cytokines regulate expression of Bcl-2 family members was examined in the haemopoietic cell line TF-1. Cytokine-induced Mcl-1 protein expression was shown to be controlled through a pathway dependent upon phosphatidylinositol 3-kinase (PI 3-kinase). The cytokine-induced increase in mRNA transcription was not dependent upon PI 3-kinase, thus dissociating the immediate-early transcription factors responsible for Mcl-1 transcription from the PI 3-kinase signalling pathway. In contrast, Mcl-1 mRNA levels were dependent upon MEK [mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated protein kinase kinase] activation, suggesting a role for the Ras/MEK/MAPK pathway in Mcl-1 transcription. Activation of PI 3-kinase was shown to be necessary to stimulate Mcl-1 protein translation. This was not due to any effect on prolonging the half-life of the protein. Finally, the lipid second messenger ceramide was shown to cause a reduction in Mcl-1 protein translation, probably via its ability to inhibit protein kinase B activation, providing further clues regarding the death-inducing effect of this lipid.

Full Text

The Full Text of this article is available as a PDF (250.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akgul C., Moulding D. A., White M. R., Edwards S. W. In vivo localisation and stability of human Mcl-1 using green fluorescent protein (GFP) fusion proteins. FEBS Lett. 2000 Jul 28;478(1-2):72–76. doi: 10.1016/s0014-5793(00)01809-3. [DOI] [PubMed] [Google Scholar]
  2. Brunet A., Bonni A., Zigmond M. J., Lin M. Z., Juo P., Hu L. S., Anderson M. J., Arden K. C., Blenis J., Greenberg M. E. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999 Mar 19;96(6):857–868. doi: 10.1016/s0092-8674(00)80595-4. [DOI] [PubMed] [Google Scholar]
  3. Brunet A., Pouysségur J. Mammalian MAP kinase modules: how to transduce specific signals. Essays Biochem. 1997;32:1–16. [PubMed] [Google Scholar]
  4. Cardone M. H., Roy N., Stennicke H. R., Salvesen G. S., Franke T. F., Stanbridge E., Frisch S., Reed J. C. Regulation of cell death protease caspase-9 by phosphorylation. Science. 1998 Nov 13;282(5392):1318–1321. doi: 10.1126/science.282.5392.1318. [DOI] [PubMed] [Google Scholar]
  5. Chao J. R., Wang J. M., Lee S. F., Peng H. W., Lin Y. H., Chou C. H., Li J. C., Huang H. M., Chou C. K., Kuo M. L. mcl-1 is an immediate-early gene activated by the granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling pathway and is one component of the GM-CSF viability response. Mol Cell Biol. 1998 Aug;18(8):4883–4898. doi: 10.1128/mcb.18.8.4883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Craddock B. L., Orchiston E. A., Hinton H. J., Welham M. J. Dissociation of apoptosis from proliferation, protein kinase B activation, and BAD phosphorylation in interleukin-3-mediated phosphoinositide 3-kinase signaling. J Biol Chem. 1999 Apr 9;274(15):10633–10640. doi: 10.1074/jbc.274.15.10633. [DOI] [PubMed] [Google Scholar]
  7. Cross D. A., Alessi D. R., Cohen P., Andjelkovich M., Hemmings B. A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995 Dec 21;378(6559):785–789. doi: 10.1038/378785a0. [DOI] [PubMed] [Google Scholar]
  8. Datta S. R., Brunet A., Greenberg M. E. Cellular survival: a play in three Akts. Genes Dev. 1999 Nov 15;13(22):2905–2927. doi: 10.1101/gad.13.22.2905. [DOI] [PubMed] [Google Scholar]
  9. Datta S. R., Dudek H., Tao X., Masters S., Fu H., Gotoh Y., Greenberg M. E. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997 Oct 17;91(2):231–241. doi: 10.1016/s0092-8674(00)80405-5. [DOI] [PubMed] [Google Scholar]
  10. English J., Pearson G., Wilsbacher J., Swantek J., Karandikar M., Xu S., Cobb M. H. New insights into the control of MAP kinase pathways. Exp Cell Res. 1999 Nov 25;253(1):255–270. doi: 10.1006/excr.1999.4687. [DOI] [PubMed] [Google Scholar]
  11. Ettinger S., Fong D., Duronio V. Lack of correlation between growth of TF-1 cells and tyrosine phosphorylation signals in response to IL-3, IL-5 and GM-CSF. Cytokine. 1997 Sep;9(9):650–659. doi: 10.1006/cyto.1997.0213. [DOI] [PubMed] [Google Scholar]
  12. Fang X., Yu S., Eder A., Mao M., Bast R. C., Jr, Boyd D., Mills G. B. Regulation of BAD phosphorylation at serine 112 by the Ras-mitogen-activated protein kinase pathway. Oncogene. 1999 Nov 18;18(48):6635–6640. doi: 10.1038/sj.onc.1203076. [DOI] [PubMed] [Google Scholar]
  13. Favata M. F., Horiuchi K. Y., Manos E. J., Daulerio A. J., Stradley D. A., Feeser W. S., Van Dyk D. E., Pitts W. J., Earl R. A., Hobbs F. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem. 1998 Jul 17;273(29):18623–18632. doi: 10.1074/jbc.273.29.18623. [DOI] [PubMed] [Google Scholar]
  14. Fujita E., Jinbo A., Matuzaki H., Konishi H., Kikkawa U., Momoi T. Akt phosphorylation site found in human caspase-9 is absent in mouse caspase-9. Biochem Biophys Res Commun. 1999 Oct 22;264(2):550–555. doi: 10.1006/bbrc.1999.1387. [DOI] [PubMed] [Google Scholar]
  15. Gingras A. C., Kennedy S. G., O'Leary M. A., Sonenberg N., Hay N. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev. 1998 Feb 15;12(4):502–513. doi: 10.1101/gad.12.4.502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Huang H. M., Huang C. J., Yen J. J. Mcl-1 is a common target of stem cell factor and interleukin-5 for apoptosis prevention activity via MEK/MAPK and PI-3K/Akt pathways. Blood. 2000 Sep 1;96(5):1764–1771. [PubMed] [Google Scholar]
  17. Katoh O., Takahashi T., Oguri T., Kuramoto K., Mihara K., Kobayashi M., Hirata S., Watanabe H. Vascular endothelial growth factor inhibits apoptotic death in hematopoietic cells after exposure to chemotherapeutic drugs by inducing MCL1 acting as an antiapoptotic factor. Cancer Res. 1998 Dec 1;58(23):5565–5569. [PubMed] [Google Scholar]
  18. Kitamura T., Tange T., Terasawa T., Chiba S., Kuwaki T., Miyagawa K., Piao Y. F., Miyazono K., Urabe A., Takaku F. Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin. J Cell Physiol. 1989 Aug;140(2):323–334. doi: 10.1002/jcp.1041400219. [DOI] [PubMed] [Google Scholar]
  19. Kolesnick R. N., Krönke M. Regulation of ceramide production and apoptosis. Annu Rev Physiol. 1998;60:643–665. doi: 10.1146/annurev.physiol.60.1.643. [DOI] [PubMed] [Google Scholar]
  20. Kops G. J., de Ruiter N. D., De Vries-Smits A. M., Powell D. R., Bos J. L., Burgering B. M. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature. 1999 Apr 15;398(6728):630–634. doi: 10.1038/19328. [DOI] [PubMed] [Google Scholar]
  21. Korsmeyer S. J. BCL-2 gene family and the regulation of programmed cell death. Cancer Res. 1999 Apr 1;59(7 Suppl):1693s–1700s. [PubMed] [Google Scholar]
  22. Kozopas K. M., Yang T., Buchan H. L., Zhou P., Craig R. W. MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3516–3520. doi: 10.1073/pnas.90.8.3516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Reed J. C. Bcl-2 family proteins. Oncogene. 1998 Dec 24;17(25):3225–3236. doi: 10.1038/sj.onc.1202591. [DOI] [PubMed] [Google Scholar]
  24. Rena G., Guo S., Cichy S. C., Unterman T. G., Cohen P. Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J Biol Chem. 1999 Jun 11;274(24):17179–17183. doi: 10.1074/jbc.274.24.17179. [DOI] [PubMed] [Google Scholar]
  25. Rinkenberger J. L., Horning S., Klocke B., Roth K., Korsmeyer S. J. Mcl-1 deficiency results in peri-implantation embryonic lethality. Genes Dev. 2000 Jan 1;14(1):23–27. [PMC free article] [PubMed] [Google Scholar]
  26. Scheid M. P., Charlton L., Pelech S. L., Duronio V. Role of p70 S6 kinase in cytokine-regulated hemopoietic cell survival. Biochem Cell Biol. 1996;74(4):595–600. doi: 10.1139/o96-064. [DOI] [PubMed] [Google Scholar]
  27. Scheid M. P., Duronio V. Dissociation of cytokine-induced phosphorylation of Bad and activation of PKB/akt: involvement of MEK upstream of Bad phosphorylation. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7439–7444. doi: 10.1073/pnas.95.13.7439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Scheid M. P., Duronio V. Phosphatidylinositol 3-OH kinase activity is not required for activation of mitogen-activated protein kinase by cytokines. J Biol Chem. 1996 Jul 26;271(30):18134–18139. doi: 10.1074/jbc.271.30.18134. [DOI] [PubMed] [Google Scholar]
  29. Scheid M. P., Lauener R. W., Duronio V. Role of phosphatidylinositol 3-OH-kinase activity in the inhibition of apoptosis in haemopoietic cells: phosphatidylinositol 3-OH-kinase inhibitors reveal a difference in signalling between interleukin-3 and granulocyte-macrophage colony stimulating factor. Biochem J. 1995 Nov 15;312(Pt 1):159–162. doi: 10.1042/bj3120159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Scheid M. P., Schubert K. M., Duronio V. Regulation of bad phosphorylation and association with Bcl-x(L) by the MAPK/Erk kinase. J Biol Chem. 1999 Oct 22;274(43):31108–31113. doi: 10.1074/jbc.274.43.31108. [DOI] [PubMed] [Google Scholar]
  31. Schubert K. M., Scheid M. P., Duronio V. Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473. J Biol Chem. 2000 May 5;275(18):13330–13335. doi: 10.1074/jbc.275.18.13330. [DOI] [PubMed] [Google Scholar]
  32. Shimamura A., Ballif B. A., Richards S. A., Blenis J. Rsk1 mediates a MEK-MAP kinase cell survival signal. Curr Biol. 2000 Feb 10;10(3):127–135. doi: 10.1016/s0960-9822(00)00310-9. [DOI] [PubMed] [Google Scholar]
  33. Sutor S. L., Vroman B. T., Armstrong E. A., Abraham R. T., Karnitz L. M. A phosphatidylinositol 3-kinase-dependent pathway that differentially regulates c-Raf and A-Raf. J Biol Chem. 1999 Mar 12;274(11):7002–7010. doi: 10.1074/jbc.274.11.7002. [DOI] [PubMed] [Google Scholar]
  34. Takata M., Ogawa W., Kitamura T., Hino Y., Kuroda S., Kotani K., Klip A., Gingras A. C., Sonenberg N., Kasuga M. Requirement for Akt (protein kinase B) in insulin-induced activation of glycogen synthase and phosphorylation of 4E-BP1 (PHAS-1). J Biol Chem. 1999 Jul 16;274(29):20611–20618. doi: 10.1074/jbc.274.29.20611. [DOI] [PubMed] [Google Scholar]
  35. Tan Y., Ruan H., Demeter M. R., Comb M. J. p90(RSK) blocks bad-mediated cell death via a protein kinase C-dependent pathway. J Biol Chem. 1999 Dec 3;274(49):34859–34867. doi: 10.1074/jbc.274.49.34859. [DOI] [PubMed] [Google Scholar]
  36. Thomas G., Hall M. N. TOR signalling and control of cell growth. Curr Opin Cell Biol. 1997 Dec;9(6):782–787. doi: 10.1016/s0955-0674(97)80078-6. [DOI] [PubMed] [Google Scholar]
  37. Townsend K. J., Trusty J. L., Traupman M. A., Eastman A., Craig R. W. Expression of the antiapoptotic MCL1 gene product is regulated by a mitogen activated protein kinase-mediated pathway triggered through microtubule disruption and protein kinase C. Oncogene. 1998 Sep 10;17(10):1223–1234. doi: 10.1038/sj.onc.1202035. [DOI] [PubMed] [Google Scholar]
  38. Townsend K. J., Zhou P., Qian L., Bieszczad C. K., Lowrey C. H., Yen A., Craig R. W. Regulation of MCL1 through a serum response factor/Elk-1-mediated mechanism links expression of a viability-promoting member of the BCL2 family to the induction of hematopoietic cell differentiation. J Biol Chem. 1999 Jan 15;274(3):1801–1813. doi: 10.1074/jbc.274.3.1801. [DOI] [PubMed] [Google Scholar]
  39. Wang J. M., Chao J. R., Chen W., Kuo M. L., Yen J. J., Yang-Yen H. F. The antiapoptotic gene mcl-1 is up-regulated by the phosphatidylinositol 3-kinase/Akt signaling pathway through a transcription factor complex containing CREB. Mol Cell Biol. 1999 Sep;19(9):6195–6206. doi: 10.1128/mcb.19.9.6195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yang T., Buchan H. L., Townsend K. J., Craig R. W. MCL-1, a member of the BLC-2 family, is induced rapidly in response to signals for cell differentiation or death, but not to signals for cell proliferation. J Cell Physiol. 1996 Mar;166(3):523–536. doi: 10.1002/(SICI)1097-4652(199603)166:3<523::AID-JCP7>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  41. Yao R., Cooper G. M. Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science. 1995 Mar 31;267(5206):2003–2006. doi: 10.1126/science.7701324. [DOI] [PubMed] [Google Scholar]
  42. Zhou H., Summers S. A., Birnbaum M. J., Pittman R. N. Inhibition of Akt kinase by cell-permeable ceramide and its implications for ceramide-induced apoptosis. J Biol Chem. 1998 Jun 26;273(26):16568–16575. doi: 10.1074/jbc.273.26.16568. [DOI] [PubMed] [Google Scholar]
  43. Zhou P., Qian L., Bieszczad C. K., Noelle R., Binder M., Levy N. B., Craig R. W. Mcl-1 in transgenic mice promotes survival in a spectrum of hematopoietic cell types and immortalization in the myeloid lineage. Blood. 1998 Nov 1;92(9):3226–3239. [PubMed] [Google Scholar]
  44. Zhou P., Qian L., Kozopas K. M., Craig R. W. Mcl-1, a Bcl-2 family member, delays the death of hematopoietic cells under a variety of apoptosis-inducing conditions. Blood. 1997 Jan 15;89(2):630–643. [PubMed] [Google Scholar]
  45. del Peso L., González-García M., Page C., Herrera R., Nuñez G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science. 1997 Oct 24;278(5338):687–689. doi: 10.1126/science.278.5338.687. [DOI] [PubMed] [Google Scholar]
  46. del Peso L., González V. M., Hernández R., Barr F. G., Núez G. Regulation of the forkhead transcription factor FKHR, but not the PAX3-FKHR fusion protein, by the serine/threonine kinase Akt. Oncogene. 1999 Dec 2;18(51):7328–7333. doi: 10.1038/sj.onc.1203159. [DOI] [PubMed] [Google Scholar]