The mechanism of aggrecan release from cartilage differs with tissue origin and the agent used to stimulate catabolism (original) (raw)

Abstract

The mechanisms of aggrecan degradation in adult human articular, adult bovine nasal and fetal bovine epiphyseal cartilage in response to either interleukin-1beta (IL-1beta) or retinoic acid were compared using an explant culture system. Bovine nasal cartilage cultured with either IL-1beta or retinoic acid exhibited significant release of glycosaminoglycan (GAG). For both factors, aggrecan proteolysis occurred predominantly at the 'aggrecanase' site, with no evidence for the action of matrix metalloproteinases, and resulted in the appearance of the corresponding G1 fragment in tissue extracts and in culture media. In human cartilage, little effect of IL-1beta was seen, but abundant release of GAG occurred in the presence of retinoic acid, with evidence of aggrecanase action. Treatment of fetal epiphyseal cartilage with retinoic acid resulted in significant GAG release, whereas treatment with IL-1beta did not. In the retinoic acid-treated tissue, however, no evidence for the cleavage of aggrecan in the interglobular region was apparent. Thus, in the fetal system, agents in addition to aggrecanase and matrix metalloproteinases appear to be active. Taken together, these data demonstrate that the pathways utilized for aggrecan catabolism may vary between different cartilages for a given stimulatory agent, and that, for a given tissue, different factors may elicit aggrecan release via different pathways.

Full Text

The Full Text of this article is available as a PDF (183.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbaszade I., Liu R. Q., Yang F., Rosenfeld S. A., Ross O. H., Link J. R., Ellis D. M., Tortorella M. D., Pratta M. A., Hollis J. M. Cloning and characterization of ADAMTS11, an aggrecanase from the ADAMTS family. J Biol Chem. 1999 Aug 13;274(33):23443–23450. doi: 10.1074/jbc.274.33.23443. [DOI] [PubMed] [Google Scholar]
  2. Bank R. A., Bayliss M. T., Lafeber F. P., Maroudas A., Tekoppele J. M. Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. The age-related increase in non-enzymatic glycation affects biomechanical properties of cartilage. Biochem J. 1998 Feb 15;330(Pt 1):345–351. doi: 10.1042/bj3300345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bonassar L. J., Sandy J. D., Lark M. W., Plaas A. H., Frank E. H., Grodzinsky A. J. Inhibition of cartilage degradation and changes in physical properties induced by IL-1beta and retinoic acid using matrix metalloproteinase inhibitors. Arch Biochem Biophys. 1997 Aug 15;344(2):404–412. doi: 10.1006/abbi.1997.0205. [DOI] [PubMed] [Google Scholar]
  4. Cawston T. E., Ellis A. J., Humm G., Lean E., Ward D., Curry V. Interleukin-1 and oncostatin M in combination promote the release of collagen fragments from bovine nasal cartilage in culture. Biochem Biophys Res Commun. 1995 Oct 4;215(1):377–385. doi: 10.1006/bbrc.1995.2476. [DOI] [PubMed] [Google Scholar]
  5. Csóka A. B., Scherer S. W., Stern R. Expression analysis of six paralogous human hyaluronidase genes clustered on chromosomes 3p21 and 7q31. Genomics. 1999 Sep 15;60(3):356–361. doi: 10.1006/geno.1999.5876. [DOI] [PubMed] [Google Scholar]
  6. Doege K. J., Sasaki M., Kimura T., Yamada Y. Complete coding sequence and deduced primary structure of the human cartilage large aggregating proteoglycan, aggrecan. Human-specific repeats, and additional alternatively spliced forms. J Biol Chem. 1991 Jan 15;266(2):894–902. [PubMed] [Google Scholar]
  7. Farndale R. W., Sayers C. A., Barrett A. J. A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connect Tissue Res. 1982;9(4):247–248. doi: 10.3109/03008208209160269. [DOI] [PubMed] [Google Scholar]
  8. Flannery C. R., Lark M. W., Sandy J. D. Identification of a stromelysin cleavage site within the interglobular domain of human aggrecan. Evidence for proteolysis at this site in vivo in human articular cartilage. J Biol Chem. 1992 Jan 15;267(2):1008–1014. [PubMed] [Google Scholar]
  9. Flannery C. R., Little C. B., Hughes C. E., Caterson B. Expression and activity of articular cartilage hyaluronidases. Biochem Biophys Res Commun. 1998 Oct 29;251(3):824–829. doi: 10.1006/bbrc.1998.9561. [DOI] [PubMed] [Google Scholar]
  10. Hardingham T. E., Fosang A. J. Proteoglycans: many forms and many functions. FASEB J. 1992 Feb 1;6(3):861–870. [PubMed] [Google Scholar]
  11. Hering T. M., Kollar J., Huynh T. D. Complete coding sequence of bovine aggrecan: comparative structural analysis. Arch Biochem Biophys. 1997 Sep 15;345(2):259–270. doi: 10.1006/abbi.1997.0261. [DOI] [PubMed] [Google Scholar]
  12. Hollander A. P., Atkins R. M., Eastwood D. M., Dieppe P. A., Elson C. J. Human cartilage is degraded by rheumatoid arthritis synovial fluid but not by recombinant cytokines in vitro. Clin Exp Immunol. 1991 Jan;83(1):52–57. doi: 10.1111/j.1365-2249.1991.tb05587.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Holmes M. W., Bayliss M. T., Muir H. Hyaluronic acid in human articular cartilage. Age-related changes in content and size. Biochem J. 1988 Mar 1;250(2):435–441. doi: 10.1042/bj2500435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hughes C. E., Caterson B., Fosang A. J., Roughley P. J., Mort J. S. Monoclonal antibodies that specifically recognize neoepitope sequences generated by 'aggrecanase' and matrix metalloproteinase cleavage of aggrecan: application to catabolism in situ and in vitro. Biochem J. 1995 Feb 1;305(Pt 3):799–804. doi: 10.1042/bj3050799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hughes C. E., Caterson B., White R. J., Roughley P. J., Mort J. S. Monoclonal antibodies recognizing protease-generated neoepitopes from cartilage proteoglycan degradation. Application to studies of human link protein cleavage by stromelysin. J Biol Chem. 1992 Aug 15;267(23):16011–16014. [PubMed] [Google Scholar]
  16. Ilic M. Z., Handley C. J., Robinson H. C., Mok M. T. Mechanism of catabolism of aggrecan by articular cartilage. Arch Biochem Biophys. 1992 Apr;294(1):115–122. doi: 10.1016/0003-9861(92)90144-l. [DOI] [PubMed] [Google Scholar]
  17. Lark M. W., Bayne E. K., Flanagan J., Harper C. F., Hoerrner L. A., Hutchinson N. I., Singer I. I., Donatelli S. A., Weidner J. R., Williams H. R. Aggrecan degradation in human cartilage. Evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. J Clin Invest. 1997 Jul 1;100(1):93–106. doi: 10.1172/JCI119526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lee E. R., Lamplugh L., Leblond C. P., Mordier S., Magny M. C., Mort J. S. Immunolocalization of the cleavage of the aggrecan core protein at the Asn341-Phe342 bond, as an indicator of the location of the metalloproteinases active in the lysis of the rat growth plate. Anat Rec. 1998 Sep;252(1):117–132. doi: 10.1002/(SICI)1097-0185(199809)252:1<117::AID-AR10>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  19. Little C. B., Flannery C. R., Hughes C. E., Mort J. S., Roughley P. J., Dent C., Caterson B. Aggrecanase versus matrix metalloproteinases in the catabolism of the interglobular domain of aggrecan in vitro. Biochem J. 1999 Nov 15;344(Pt 1):61–68. [PMC free article] [PubMed] [Google Scholar]
  20. Lohmander L. S., Hoerrner L. A., Dahlberg L., Roos H., Björnsson S., Lark M. W. Stromelysin, tissue inhibitor of metalloproteinases and proteoglycan fragments in human knee joint fluid after injury. J Rheumatol. 1993 Aug;20(8):1362–1368. [PubMed] [Google Scholar]
  21. Lohmander L. S., Hoerrner L. A., Lark M. W. Metalloproteinases, tissue inhibitor, and proteoglycan fragments in knee synovial fluid in human osteoarthritis. Arthritis Rheum. 1993 Feb;36(2):181–189. doi: 10.1002/art.1780360207. [DOI] [PubMed] [Google Scholar]
  22. Lohmander L. S., Neame P. J., Sandy J. D. The structure of aggrecan fragments in human synovial fluid. Evidence that aggrecanase mediates cartilage degradation in inflammatory joint disease, joint injury, and osteoarthritis. Arthritis Rheum. 1993 Sep;36(9):1214–1222. doi: 10.1002/art.1780360906. [DOI] [PubMed] [Google Scholar]
  23. Mach L., Schwihla H., Stüwe K., Rowan A. D., Mort J. S., Glössl J. Activation of procathepsin B in human hepatoma cells: the conversion into the mature enzyme relies on the action of cathepsin B itself. Biochem J. 1993 Jul 15;293(Pt 2):437–442. doi: 10.1042/bj2930437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Maroudas A., Bayliss M. T., Uchitel-Kaushansky N., Schneiderman R., Gilav E. Aggrecan turnover in human articular cartilage: use of aspartic acid racemization as a marker of molecular age. Arch Biochem Biophys. 1998 Feb 1;350(1):61–71. doi: 10.1006/abbi.1997.0492. [DOI] [PubMed] [Google Scholar]
  25. McCord J. M. Free radicals and inflammation: protection of synovial fluid by superoxide dismutase. Science. 1974 Aug 9;185(4150):529–531. doi: 10.1126/science.185.4150.529. [DOI] [PubMed] [Google Scholar]
  26. Mort J. S., Buttle D. J. The use of cleavage site specific antibodies to delineate protein processing and breakdown pathways. Mol Pathol. 1999 Feb;52(1):11–18. doi: 10.1136/mp.52.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Neame P. J., Barry F. P. The link proteins. Experientia. 1993 May 15;49(5):393–402. doi: 10.1007/BF01923584. [DOI] [PubMed] [Google Scholar]
  28. Nguyen Q., Mort J. S., Roughley P. J. Preferential mRNA expression of prostromelysin relative to procollagenase and in situ localization in human articular cartilage. J Clin Invest. 1992 Apr;89(4):1189–1197. doi: 10.1172/JCI115702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pratta M. A., Tortorella M. D., Arner E. C. Age-related changes in aggrecan glycosylation affect cleavage by aggrecanase. J Biol Chem. 2000 Dec 15;275(50):39096–39102. doi: 10.1074/jbc.M006201200. [DOI] [PubMed] [Google Scholar]
  30. Ratcliffe A., Tyler J. A., Hardingham T. E. Articular cartilage cultured with interleukin 1. Increased release of link protein, hyaluronate-binding region and other proteoglycan fragments. Biochem J. 1986 Sep 1;238(2):571–580. doi: 10.1042/bj2380571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Roberts C. R., Mort J. S., Roughley P. J. Treatment of cartilage proteoglycan aggregate with hydrogen peroxide. Relationship between observed degradation products and those that occur naturally during aging. Biochem J. 1987 Oct 15;247(2):349–357. doi: 10.1042/bj2470349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Roughley P. J., Mort J. S. Ageing and the aggregating proteoglycans of human articular cartilage. Clin Sci (Lond) 1986 Oct;71(4):337–344. doi: 10.1042/cs0710337. [DOI] [PubMed] [Google Scholar]
  33. Roughley P. J., White R. J. Age-related changes in the structure of the proteoglycan subunits from human articular cartilage. J Biol Chem. 1980 Jan 10;255(1):217–224. [PubMed] [Google Scholar]
  34. Sandy J. D., Neame P. J., Boynton R. E., Flannery C. R. Catabolism of aggrecan in cartilage explants. Identification of a major cleavage site within the interglobular domain. J Biol Chem. 1991 May 15;266(14):8683–8685. [PubMed] [Google Scholar]
  35. Sandy J. D., Thompson V., Doege K., Verscharen C. The intermediates of aggrecanase-dependent cleavage of aggrecan in rat chondrosarcoma cells treated with interleukin-1. Biochem J. 2000 Oct 1;351(Pt 1):161–166. doi: 10.1042/0264-6021:3510161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Singer I. I., Kawka D. W., Bayne E. K., Donatelli S. A., Weidner J. R., Williams H. R., Ayala J. M., Mumford R. A., Lark M. W., Glant T. T. VDIPEN, a metalloproteinase-generated neoepitope, is induced and immunolocalized in articular cartilage during inflammatory arthritis. J Clin Invest. 1995 May;95(5):2178–2186. doi: 10.1172/JCI117907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sztrolovics R., Alini M., Roughley P. J., Mort J. S. Aggrecan degradation in human intervertebral disc and articular cartilage. Biochem J. 1997 Aug 15;326(Pt 1):235–241. doi: 10.1042/bj3260235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tiku M. L., Shah R., Allison G. T. Evidence linking chondrocyte lipid peroxidation to cartilage matrix protein degradation. Possible role in cartilage aging and the pathogenesis of osteoarthritis. J Biol Chem. 2000 Jun 30;275(26):20069–20076. doi: 10.1074/jbc.M907604199. [DOI] [PubMed] [Google Scholar]
  39. Tiku M. L., Yan Y. P., Chen K. Y. Hydroxyl radical formation in chondrocytes and cartilage as detected by electron paramagnetic resonance spectroscopy using spin trapping reagents. Free Radic Res. 1998 Sep;29(3):177–187. doi: 10.1080/10715769800300211. [DOI] [PubMed] [Google Scholar]
  40. Tortorella M. D., Burn T. C., Pratta M. A., Abbaszade I., Hollis J. M., Liu R., Rosenfeld S. A., Copeland R. A., Decicco C. P., Wynn R. Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. Science. 1999 Jun 4;284(5420):1664–1666. doi: 10.1126/science.284.5420.1664. [DOI] [PubMed] [Google Scholar]
  41. Tortorella M. D., Pratta M., Liu R. Q., Austin J., Ross O. H., Abbaszade I., Burn T., Arner E. Sites of aggrecan cleavage by recombinant human aggrecanase-1 (ADAMTS-4). J Biol Chem. 2000 Jun 16;275(24):18566–18573. doi: 10.1074/jbc.M909383199. [DOI] [PubMed] [Google Scholar]