Diacylglycerol activates the influx of extracellular cations in T-lymphocytes independently of intracellular calcium-store depletion and possibly involving endogenous TRP6 gene products (original) (raw)

Abstract

In Jurkat and human peripheral blood T-lymphocytes, 1-oleoyl-2-acetyl-sn-glycerol (OAG), a membrane-permeant analogue of diacylglycerol, activated the influx of Ca(2+), Ba(2+) and Sr(2+). OAG also caused plasma-membrane depolarization in Ca(2+)-free media that was recovered by the addition of bivalent cation, indicating the activation of Na(+) influx. OAG-induced cation influx was (i) mimicked by the natural dacylglycerol 1-stearoyl-2-arachidonyl-sn-glycerol, (ii) not blocked by inhibiting protein kinase C or in the absence of phospholipase C activity and (iii) blocked by La(3+) and Gd(3+). Differently from OAG, both thapsigargin and phytohaemagglutinin activated a potent influx of Ca(2+), but little influx of Ba(2+) and Sr(2+). Moreover, the influx of Ca(2+) activated by thapsigargin and that activated by OAG were additive. Furthermore, several drugs (i.e. econazole, SKF96365, carbonyl cyanide p-trifluoromethoxyphenylhydrazone, 2-aminoethoxy diphenylborate and calyculin-A), while inhibiting the influx of Ca(2+) induced by both thapsigargin and phytohaemagglutinin, did not affect OAG-stimulated cation influx. Transient receptor potential (TRP) 3 and TRP6 proteins have been shown previously to be activated by diacylglycerol when expressed heterologously in animal cells [Hofmann, Obukhov, Schaefer, Harteneck, Gudermann and Schultz (1999) Nature (London) 397, 259-263]. In both Jurkat and peripheral blood T-lymphocytes, mRNA encoding TRP proteins 1, 3, 4 and 6 was detected by reverse transcriptase PCR, and the TRP6 protein was detected by Western blotting in a purified plasma-membrane fraction. We conclude that T-cells express a diacylglycerol-activated cation channel, unrelated to the channel involved in capacitative Ca(2+) entry, and associated with the expression of TRP6 protein.

Full Text

The Full Text of this article is available as a PDF (206.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barritt G. J. Receptor-activated Ca2+ inflow in animal cells: a variety of pathways tailored to meet different intracellular Ca2+ signalling requirements. Biochem J. 1999 Jan 15;337(Pt 2):153–169. [PMC free article] [PubMed] [Google Scholar]
  2. Berridge M. J. Capacitative calcium entry. Biochem J. 1995 Nov 15;312(Pt 1):1–11. doi: 10.1042/bj3120001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cahalan M. D., Wulff H., Chandy K. G. Molecular properties and physiological roles of ion channels in the immune system. J Clin Immunol. 2001 Jul;21(4):235–252. doi: 10.1023/a:1010958907271. [DOI] [PubMed] [Google Scholar]
  4. Chaney L. K., Jacobson B. S. Coating cells with colloidal silica for high yield isolation of plasma membrane sheets and identification of transmembrane proteins. J Biol Chem. 1983 Aug 25;258(16):10062–10072. [PubMed] [Google Scholar]
  5. Clapham D. E., Runnels L. W., Strübing C. The TRP ion channel family. Nat Rev Neurosci. 2001 Jun;2(6):387–396. doi: 10.1038/35077544. [DOI] [PubMed] [Google Scholar]
  6. Di Virgilio F., Fasolato C., Steinberg T. H. Inhibitors of membrane transport system for organic anions block fura-2 excretion from PC12 and N2A cells. Biochem J. 1988 Dec 15;256(3):959–963. doi: 10.1042/bj2560959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fasolato C., Innocenti B., Pozzan T. Receptor-activated Ca2+ influx: how many mechanisms for how many channels? Trends Pharmacol Sci. 1994 Mar;15(3):77–83. doi: 10.1016/0165-6147(94)90282-8. [DOI] [PubMed] [Google Scholar]
  8. Fomina A. F., Fanger C. M., Kozak J. A., Cahalan M. D. Single channel properties and regulated expression of Ca(2+) release-activated Ca(2+) (CRAC) channels in human T cells. J Cell Biol. 2000 Sep 18;150(6):1435–1444. doi: 10.1083/jcb.150.6.1435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gamberucci A., Fulceri R., Marcolongo P., Pralong W. F., Benedetti A. Histones and basic polypeptides activate Ca2+/cation influx in various cell types. Biochem J. 1998 Apr 15;331(Pt 2):623–630. doi: 10.1042/bj3310623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gamberucci A., Innocenti B., Fulceri R., Bànhegyi G., Giunti R., Pozzan T., Benedetti A. Modulation of Ca2+ influx dependent on store depletion by intracellular adenine-guanine nucleotide levels. J Biol Chem. 1994 Sep 23;269(38):23597–23602. [PubMed] [Google Scholar]
  11. Gilabert J. A., Bakowski D., Parekh A. B. Energized mitochondria increase the dynamic range over which inositol 1,4,5-trisphosphate activates store-operated calcium influx. EMBO J. 2001 Jun 1;20(11):2672–2679. doi: 10.1093/emboj/20.11.2672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  13. Haverstick D. M., Dicus M., Resnick M. S., Sando J. J., Gray L. S. A role for protein kinase CbetaI in the regulation of Ca2+ entry in Jurkat T cells. J Biol Chem. 1997 Jun 13;272(24):15426–15433. doi: 10.1074/jbc.272.24.15426. [DOI] [PubMed] [Google Scholar]
  14. Helliwell R. M., Large W. A. Alpha 1-adrenoceptor activation of a non-selective cation current in rabbit portal vein by 1,2-diacyl-sn-glycerol. J Physiol. 1997 Mar 1;499(Pt 2):417–428. doi: 10.1113/jphysiol.1997.sp021938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hofmann T., Obukhov A. G., Schaefer M., Harteneck C., Gudermann T., Schultz G. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature. 1999 Jan 21;397(6716):259–263. doi: 10.1038/16711. [DOI] [PubMed] [Google Scholar]
  16. Hoth M., Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature. 1992 Jan 23;355(6358):353–356. doi: 10.1038/355353a0. [DOI] [PubMed] [Google Scholar]
  17. Hurst R. S., Zhu X., Boulay G., Birnbaumer L., Stefani E. Ionic currents underlying HTRP3 mediated agonist-dependent Ca2+ influx in stably transfected HEK293 cells. FEBS Lett. 1998 Feb 6;422(3):333–338. doi: 10.1016/s0014-5793(98)00035-0. [DOI] [PubMed] [Google Scholar]
  18. Inoue R., Okada T., Onoue H., Hara Y., Shimizu S., Naitoh S., Ito Y., Mori Y. The transient receptor potential protein homologue TRP6 is the essential component of vascular alpha(1)-adrenoceptor-activated Ca(2+)-permeable cation channel. Circ Res. 2001 Feb 16;88(3):325–332. doi: 10.1161/01.res.88.3.325. [DOI] [PubMed] [Google Scholar]
  19. Jacobson B. S., Schnitzer J. E., McCaffery M., Palade G. E. Isolation and partial characterization of the luminal plasmalemma of microvascular endothelium from rat lungs. Eur J Cell Biol. 1992 Aug;58(2):296–306. [PubMed] [Google Scholar]
  20. Latorre R., Oberhauser A., Labarca P., Alvarez O. Varieties of calcium-activated potassium channels. Annu Rev Physiol. 1989;51:385–399. doi: 10.1146/annurev.ph.51.030189.002125. [DOI] [PubMed] [Google Scholar]
  21. Lewis R. S. Calcium signaling mechanisms in T lymphocytes. Annu Rev Immunol. 2001;19:497–521. doi: 10.1146/annurev.immunol.19.1.497. [DOI] [PubMed] [Google Scholar]
  22. Liu X., Wang W., Singh B. B., Lockwich T., Jadlowiec J., O'Connell B., Wellner R., Zhu M. X., Ambudkar I. S. Trp1, a candidate protein for the store-operated Ca(2+) influx mechanism in salivary gland cells. J Biol Chem. 2000 Feb 4;275(5):3403–3411. doi: 10.1074/jbc.275.5.3403. [DOI] [PubMed] [Google Scholar]
  23. Ma H. T., Patterson R. L., van Rossum D. B., Birnbaumer L., Mikoshiba K., Gill D. L. Requirement of the inositol trisphosphate receptor for activation of store-operated Ca2+ channels. Science. 2000 Mar 3;287(5458):1647–1651. doi: 10.1126/science.287.5458.1647. [DOI] [PubMed] [Google Scholar]
  24. Ma H. T., Venkatachalam K., Li H. S., Montell C., Kurosaki T., Patterson R. L., Gill D. L. Assessment of the role of the inositol 1,4,5-trisphosphate receptor in the activation of transient receptor potential channels and store-operated Ca2+ entry channels. J Biol Chem. 2001 Mar 19;276(22):18888–18896. doi: 10.1074/jbc.M100944200. [DOI] [PubMed] [Google Scholar]
  25. Malgaroli A., Milani D., Meldolesi J., Pozzan T. Fura-2 measurement of cytosolic free Ca2+ in monolayers and suspensions of various types of animal cells. J Cell Biol. 1987 Nov;105(5):2145–2155. doi: 10.1083/jcb.105.5.2145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mason M. J., Mayer B., Hymel L. J. Inhibition of Ca2+ transport pathways in thymic lymphocytes by econazole, miconazole, and SKF 96365. Am J Physiol. 1993 Mar;264(3 Pt 1):C654–C662. doi: 10.1152/ajpcell.1993.264.3.C654. [DOI] [PubMed] [Google Scholar]
  27. McKay R. R., Szymeczek-Seay C. L., Lievremont J. P., Bird G. S., Zitt C., Jüngling E., Lückhoff A., Putney J. W., Jr Cloning and expression of the human transient receptor potential 4 (TRP4) gene: localization and functional expression of human TRP4 and TRP3. Biochem J. 2000 Nov 1;351(Pt 3):735–746. [PMC free article] [PubMed] [Google Scholar]
  28. Okada T., Inoue R., Yamazaki K., Maeda A., Kurosaki T., Yamakuni T., Tanaka I., Shimizu S., Ikenaka K., Imoto K. Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca(2+)-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem. 1999 Sep 24;274(39):27359–27370. doi: 10.1074/jbc.274.39.27359. [DOI] [PubMed] [Google Scholar]
  29. Parekh A. B., Penner R. Store depletion and calcium influx. Physiol Rev. 1997 Oct;77(4):901–930. doi: 10.1152/physrev.1997.77.4.901. [DOI] [PubMed] [Google Scholar]
  30. Patterson R. L., van Rossum D. B., Gill D. L. Store-operated Ca2+ entry: evidence for a secretion-like coupling model. Cell. 1999 Aug 20;98(4):487–499. doi: 10.1016/s0092-8674(00)81977-7. [DOI] [PubMed] [Google Scholar]
  31. Pizzo P., Burgo A., Pozzan T., Fasolato C. Role of capacitative calcium entry on glutamate-induced calcium influx in type-I rat cortical astrocytes. J Neurochem. 2001 Oct;79(1):98–109. doi: 10.1046/j.1471-4159.2001.00539.x. [DOI] [PubMed] [Google Scholar]
  32. Putney J. W., Jr Capacitative calcium entry revisited. Cell Calcium. 1990 Nov-Dec;11(10):611–624. doi: 10.1016/0143-4160(90)90016-n. [DOI] [PubMed] [Google Scholar]
  33. Putney J. W., Jr Pharmacology of capacitative calcium entry. Mol Interv. 2001 Jun;1(2):84–94. [PubMed] [Google Scholar]
  34. Straus D. B., Weiss A. Genetic evidence for the involvement of the lck tyrosine kinase in signal transduction through the T cell antigen receptor. Cell. 1992 Aug 21;70(4):585–593. doi: 10.1016/0092-8674(92)90428-f. [DOI] [PubMed] [Google Scholar]
  35. Strotmann R., Harteneck C., Nunnenmacher K., Schultz G., Plant T. D. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol. 2000 Oct;2(10):695–702. doi: 10.1038/35036318. [DOI] [PubMed] [Google Scholar]
  36. Su Z., Csutora P., Hunton D., Shoemaker R. L., Marchase R. B., Blalock J. E. A store-operated nonselective cation channel in lymphocytes is activated directly by Ca(2+) influx factor and diacylglycerol. Am J Physiol Cell Physiol. 2001 May;280(5):C1284–C1292. doi: 10.1152/ajpcell.2001.280.5.C1284. [DOI] [PubMed] [Google Scholar]
  37. Tesfai Y., Brereton H. M., Barritt G. J. A diacylglycerol-activated Ca2+ channel in PC12 cells (an adrenal chromaffin cell line) correlates with expression of the TRP-6 (transient receptor potential) protein. Biochem J. 2001 Sep 15;358(Pt 3):717–726. doi: 10.1042/0264-6021:3580717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wack A., Soldaini E., Tseng C., Nuti S., Klimpel G., Abrignani S. Binding of the hepatitis C virus envelope protein E2 to CD81 provides a co-stimulatory signal for human T cells. Eur J Immunol. 2001 Jan;31(1):166–175. doi: 10.1002/1521-4141(200101)31:1<166::aid-immu166>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
  39. Zhang L., Saffen D. Muscarinic acetylcholine receptor regulation of TRP6 Ca2+ channel isoforms. Molecular structures and functional characterization. J Biol Chem. 2001 Jan 12;276(16):13331–13339. doi: 10.1074/jbc.M008914200. [DOI] [PubMed] [Google Scholar]
  40. Zhang Z., Tang J., Tikunova S., Johnson J. D., Chen Z., Qin N., Dietrich A., Stefani E., Birnbaumer L., Zhu M. X. Activation of Trp3 by inositol 1,4,5-trisphosphate receptors through displacement of inhibitory calmodulin from a common binding domain. Proc Natl Acad Sci U S A. 2001 Feb 27;98(6):3168–3173. doi: 10.1073/pnas.051632698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Zhu X., Jiang M., Birnbaumer L. Receptor-activated Ca2+ influx via human Trp3 stably expressed in human embryonic kidney (HEK)293 cells. Evidence for a non-capacitative Ca2+ entry. J Biol Chem. 1998 Jan 2;273(1):133–142. doi: 10.1074/jbc.273.1.133. [DOI] [PubMed] [Google Scholar]
  42. Zhu X., Jiang M., Peyton M., Boulay G., Hurst R., Stefani E., Birnbaumer L. trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell. 1996 May 31;85(5):661–671. doi: 10.1016/s0092-8674(00)81233-7. [DOI] [PubMed] [Google Scholar]
  43. Zweifach A., Lewis R. S. Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6295–6299. doi: 10.1073/pnas.90.13.6295. [DOI] [PMC free article] [PubMed] [Google Scholar]