The disulphide bridges and soluble tryptic peptides of calf rennin (original) (raw)

Abstract

1. Cysteic acid peptides from various digests of calf rennin were purified by diagonal paper electrophoresis. 2. The amino acid sequence of these peptides accounts for 38 amino acids around three unique disulphide bridges in rennin. 3. One bridge connects two acidic regions of the chain, one forms a loop of five residues and the other a loop of six residues. 4. These bridges are homologous with those of hog pepsin. 5. Tryptic peptides from the _C_-terminus of rennin account for 22 residues, 17 of which are homologous with the _C_-terminus of pepsin. 6. Altogether, sequences accounting for 94 of the 270 residues in rennin are described and the degree of homology with pepsin approximates to 70%.

1064

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BANG-ENSEN V., FOLTMANN B., ROMBAUTS W. STUDIES ON RENNIN. X. ON THE PROTEOLYTIC SPECIFICITY OF RENNIN. C R Trav Lab Carlsberg. 1964;34:326–345. [PubMed] [Google Scholar]
  2. Brown J. R., Hartley B. S. Location of disulphide bridges by diagonal paper electrophoresis. The disulphide bridges of bovine chymotrypsinogen A. Biochem J. 1966 Oct;101(1):214–228. doi: 10.1042/bj1010214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown J. R., Kauffman D. L., Hartley B. S. The primary structure of porcine pancreatic elastase. The N-terminus and disulphide bridges. Biochem J. 1967 May;103(2):497–507. doi: 10.1042/bj1030497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dopheide T. A., Moore S., Stein W. H. The carboxyl-terminal sequence of porcine pepsin. J Biol Chem. 1967 Apr 25;242(8):1833–1837. [PubMed] [Google Scholar]
  5. FOLTMANN B. STUDIES ON RENNIN. VII. ON THE AMINO ACID COMPOSITION OF PRORENNIN, RENNIN AND OF PEPTIDES LIBERATED DURING THE ACTIVATION OF PRORENNIN. C R Trav Lab Carlsberg. 1964;34:275–286. [PubMed] [Google Scholar]
  6. Foltmann B. A review on prorennin and rennin. C R Trav Lab Carlsberg. 1966;35(8):143–231. [PubMed] [Google Scholar]
  7. GRAY W. R., HARTLEY B. S. THE STRUCTURE OF A CHYMOTRYPTIC PEPTIDE FROM PSEUDOMONAS CYTOCHROME C-551. Biochem J. 1963 Nov;89:379–380. doi: 10.1042/bj0890379. [DOI] [PubMed] [Google Scholar]
  8. HEILMANN J., BARROLLIER J., WATZKE E. Beitrag zur Aminosäurebestimmung auf Papierchromatogrammen. Hoppe Seylers Z Physiol Chem. 1957;309(4-6):219–220. [PubMed] [Google Scholar]
  9. Hartley B. S., Brown J. R., Kauffman D. L., Smillie L. B. Evolutionary similarities between pancreatic proteolytic enzymes. Nature. 1965 Sep 11;207(5002):1157–1159. doi: 10.1038/2071157a0. [DOI] [PubMed] [Google Scholar]
  10. Kuznetzov Y. S., Kovaleva G. G., Stepanov V. M. Arginine and lysine peptides of hog pepsin. Biochim Biophys Acta. 1966 Apr 12;118(1):219–220. doi: 10.1016/s0926-6593(66)80165-0. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Offord R. E. Electrophoretic mobilities of peptides on paper and their use in the determination of amide groups. Nature. 1966 Aug 6;211(5049):591–593. doi: 10.1038/211591a0. [DOI] [PubMed] [Google Scholar]
  13. Smillie L. B., Hartley B. S. Histidine sequences in the active centres of some 'serine' proteinases. Biochem J. 1966 Oct;101(1):232–241. doi: 10.1042/bj1010232. [DOI] [PMC free article] [PubMed] [Google Scholar]