Origins of individual swimming behavior in bacteria (original) (raw)

Abstract

Cells in a cloned population of coliform bacteria exhibit a wide range of swimming behaviors--a form of non-genetic individuality. We used computer models to examine the proposition that these variations are due to differences in the number of chemotaxis signaling molecules from one cell to the next. Simulations were run in which the concentrations of seven gene products in the chemotaxis pathway were changed either deterministically or stochastically, with the changes derived from independent normal distributions. Computer models with two adaptation mechanisms were compared with experimental results from observations on individuals drawn from genetically identical populations. The range of swimming behavior predicted for cells with a standard deviation of protein copy number per cell of 10% of the mean was found to match closely the experimental range of the wild-type population. We also make predictions for the swimming behaviors of mutant strains lacking the adaptational mechanism that can be tested experimentally.

Full Text

The Full Text of this article is available as a PDF (107.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asakura S., Honda H. Two-state model for bacterial chemoreceptor proteins. The role of multiple methylation. J Mol Biol. 1984 Jul 5;176(3):349–367. doi: 10.1016/0022-2836(84)90494-7. [DOI] [PubMed] [Google Scholar]
  2. Barkai N., Leibler S. Robustness in simple biochemical networks. Nature. 1997 Jun 26;387(6636):913–917. doi: 10.1038/43199. [DOI] [PubMed] [Google Scholar]
  3. Berg H. C., Brown D. A. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature. 1972 Oct 27;239(5374):500–504. doi: 10.1038/239500a0. [DOI] [PubMed] [Google Scholar]
  4. Block S. M., Segall J. E., Berg H. C. Adaptation kinetics in bacterial chemotaxis. J Bacteriol. 1983 Apr;154(1):312–323. doi: 10.1128/jb.154.1.312-323.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bray D., Bourret R. B. Computer analysis of the binding reactions leading to a transmembrane receptor-linked multiprotein complex involved in bacterial chemotaxis. Mol Biol Cell. 1995 Oct;6(10):1367–1380. doi: 10.1091/mbc.6.10.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bray D., Bourret R. B., Simon M. I. Computer simulation of the phosphorylation cascade controlling bacterial chemotaxis. Mol Biol Cell. 1993 May;4(5):469–482. doi: 10.1091/mbc.4.5.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Crissman H. A., Darzynkiewicz Z., Tobey R. A., Steinkamp J. A. Correlated measurements of DNA, RNA, and protein in individual cells by flow cytometry. Science. 1985 Jun 14;228(4705):1321–1324. doi: 10.1126/science.2408339. [DOI] [PubMed] [Google Scholar]
  8. Darzynkiewicz Z., Crissman H., Traganos F., Steinkamp J. Cell heterogeneity during the cell cycle. J Cell Physiol. 1982 Dec;113(3):465–474. doi: 10.1002/jcp.1041130316. [DOI] [PubMed] [Google Scholar]
  9. Eisenbach M. Control of bacterial chemotaxis. Mol Microbiol. 1996 Jun;20(5):903–910. doi: 10.1111/j.1365-2958.1996.tb02531.x. [DOI] [PubMed] [Google Scholar]
  10. Eisenbach M. Functions of the flagellar modes of rotation in bacterial motility and chemotaxis. Mol Microbiol. 1990 Feb;4(2):161–167. doi: 10.1111/j.1365-2958.1990.tb00584.x. [DOI] [PubMed] [Google Scholar]
  11. Hauri D. C., Ross J. A model of excitation and adaptation in bacterial chemotaxis. Biophys J. 1995 Feb;68(2):708–722. doi: 10.1016/S0006-3495(95)80232-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ko M. S. Induction mechanism of a single gene molecule: stochastic or deterministic? Bioessays. 1992 May;14(5):341–346. doi: 10.1002/bies.950140510. [DOI] [PubMed] [Google Scholar]
  13. Kuo S. C., Koshland D. E., Jr Multiple kinetic states for the flagellar motor switch. J Bacteriol. 1989 Nov;171(11):6279–6287. doi: 10.1128/jb.171.11.6279-6287.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Liu J. D., Parkinson J. S. Role of CheW protein in coupling membrane receptors to the intracellular signaling system of bacterial chemotaxis. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8703–8707. doi: 10.1073/pnas.86.22.8703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McAdams H. H., Arkin A. Stochastic mechanisms in gene expression. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):814–819. doi: 10.1073/pnas.94.3.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Parkinson J. S. Signal transduction schemes of bacteria. Cell. 1993 Jun 4;73(5):857–871. doi: 10.1016/0092-8674(93)90267-t. [DOI] [PubMed] [Google Scholar]
  17. Sanders D. A., Mendez B., Koshland D. E., Jr Role of the CheW protein in bacterial chemotaxis: overexpression is equivalent to absence. J Bacteriol. 1989 Nov;171(11):6271–6278. doi: 10.1128/jb.171.11.6271-6278.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Segel L. A., Goldbeter A., Devreotes P. N., Knox B. E. A mechanism for exact sensory adaptation based on receptor modification. J Theor Biol. 1986 May 21;120(2):151–179. doi: 10.1016/s0022-5193(86)80171-0. [DOI] [PubMed] [Google Scholar]
  19. Sennerstam R. Partition of protein (mass) to sister cell pairs at mitosis: a re-evaluation. J Cell Sci. 1988 Jun;90(Pt 2):301–306. doi: 10.1242/jcs.90.2.301. [DOI] [PubMed] [Google Scholar]
  20. Silverman M., Simon M. Characterization of Escherichia coli flagellar mutants that are insensitive to catabolite repression. J Bacteriol. 1974 Dec;120(3):1196–1203. doi: 10.1128/jb.120.3.1196-1203.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Spiro P. A., Parkinson J. S., Othmer H. G. A model of excitation and adaptation in bacterial chemotaxis. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7263–7268. doi: 10.1073/pnas.94.14.7263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Spudich J. L., Koshland D. E., Jr Non-genetic individuality: chance in the single cell. Nature. 1976 Aug 5;262(5568):467–471. doi: 10.1038/262467a0. [DOI] [PubMed] [Google Scholar]
  23. Welch M., Oosawa K., Aizawa S., Eisenbach M. Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8787–8791. doi: 10.1073/pnas.90.19.8787. [DOI] [PMC free article] [PubMed] [Google Scholar]