Membrane tether formation from blebbing cells (original) (raw)

Abstract

Membrane tension has been proposed to be important in regulating cell functions such as endocytosis and cell motility. The apparent membrane tension has been calculated from tether forces measured with laser tweezers. Both membrane-cytoskeleton adhesion and membrane tension contribute to the tether force. Separation of the plasma membrane from the cytoskeleton occurs in membrane blebs, which could remove the membrane-cytoskeleton adhesion term. In renal epithelial cells, tether forces are significantly lower on blebs than on membranes that are supported by cytoskeleton. Furthermore, the tether forces are equal on apical and basolateral blebs. In contrast, tether forces from membranes supported by the cytoskeleton are greater in apical than in basolateral regions, which is consistent with the greater apparent cytoskeletal density in the apical region. We suggest that the tether force on blebs primarily contains only the membrane tension term and that the membrane tension may be uniform over the cell surface. Additional support for this hypothesis comes from observations of melanoma cells that spontaneously bleb. In melanoma cells, tether forces on blebs are proportional to the radius of the bleb, and as large blebs form, there are spikes in the tether force in other cell regions. We suggest that an internal osmotic pressure inflates the blebs, and the pressure calculated from the Law of Laplace is similar to independent measurements of intracellular pressures. When the membrane tension term is subtracted from the apparent membrane tension over the cytoskeleton, the membrane-cytoskeleton adhesion term can be estimated. In both cell systems, membrane-cytoskeleton adhesion was the major factor in generating the tether force.

Full Text

The Full Text of this article is available as a PDF (120.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett V., Lambert S., Davis J. Q., Zhang X. Molecular architecture of the specialized axonal membrane at the node of Ranvier. Soc Gen Physiol Ser. 1997;52:107–120. [PubMed] [Google Scholar]
  2. Berk D. A., Hochmuth R. M. Lateral mobility of integral proteins in red blood cell tethers. Biophys J. 1992 Jan;61(1):9–18. doi: 10.1016/S0006-3495(92)81811-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen J., Cohn J. A., Mandel L. J. Dephosphorylation of ezrin as an early event in renal microvillar breakdown and anoxic injury. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7495–7499. doi: 10.1073/pnas.92.16.7495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen J., Dai J., Grant R. L., Doctor R. B., Sheetz M. P., Mandel L. J. Loss of cytoskeletal support is not sufficient for anoxic plasma membrane disruption in renal cells. Am J Physiol. 1997 Apr;272(4 Pt 1):C1319–C1328. doi: 10.1152/ajpcell.1997.272.4.C1319. [DOI] [PubMed] [Google Scholar]
  5. Cunningham C. C. Actin polymerization and intracellular solvent flow in cell surface blebbing. J Cell Biol. 1995 Jun;129(6):1589–1599. doi: 10.1083/jcb.129.6.1589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cunningham C. C., Gorlin J. B., Kwiatkowski D. J., Hartwig J. H., Janmey P. A., Byers H. R., Stossel T. P. Actin-binding protein requirement for cortical stability and efficient locomotion. Science. 1992 Jan 17;255(5042):325–327. doi: 10.1126/science.1549777. [DOI] [PubMed] [Google Scholar]
  7. Dai J., Sheetz M. P. Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers. Biophys J. 1995 Mar;68(3):988–996. doi: 10.1016/S0006-3495(95)80274-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dai J., Sheetz M. P., Wan X., Morris C. E. Membrane tension in swelling and shrinking molluscan neurons. J Neurosci. 1998 Sep 1;18(17):6681–6692. doi: 10.1523/JNEUROSCI.18-17-06681.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dai J., Ting-Beall H. P., Sheetz M. P. The secretion-coupled endocytosis correlates with membrane tension changes in RBL 2H3 cells. J Gen Physiol. 1997 Jul;110(1):1–10. doi: 10.1085/jgp.110.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dong C., Aznavoorian S., Liotta L. A. Two phases of pseudopod protrusion in tumor cells revealed by a micropipette. Microvasc Res. 1994 Jan;47(1):55–67. doi: 10.1006/mvre.1994.1005. [DOI] [PubMed] [Google Scholar]
  11. Fein H. Microdimensional pressure measurements in electrolytes. J Appl Physiol. 1972 Apr;32(4):560–564. doi: 10.1152/jappl.1972.32.4.560. [DOI] [PubMed] [Google Scholar]
  12. Gelles J., Schnapp B. J., Sheetz M. P. Tracking kinesin-driven movements with nanometre-scale precision. Nature. 1988 Feb 4;331(6155):450–453. doi: 10.1038/331450a0. [DOI] [PubMed] [Google Scholar]
  13. Hochmuth F. M., Shao J. Y., Dai J., Sheetz M. P. Deformation and flow of membrane into tethers extracted from neuronal growth cones. Biophys J. 1996 Jan;70(1):358–369. doi: 10.1016/S0006-3495(96)79577-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hochmuth R. M., Mohandas N., Blackshear P. L., Jr Measurement of the elastic modulus for red cell membrane using a fluid mechanical technique. Biophys J. 1973 Aug;13(8):747–762. doi: 10.1016/S0006-3495(73)86021-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hwang W. C., Waugh R. E. Energy of dissociation of lipid bilayer from the membrane skeleton of red blood cells. Biophys J. 1997 Jun;72(6):2669–2678. doi: 10.1016/S0006-3495(97)78910-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hyvönen M., Macias M. J., Nilges M., Oschkinat H., Saraste M., Wilmanns M. Structure of the binding site for inositol phosphates in a PH domain. EMBO J. 1995 Oct 2;14(19):4676–4685. doi: 10.1002/j.1460-2075.1995.tb00149.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Keller H. U., Bebie H. Protrusive activity quantitatively determines the rate and direction of cell locomotion. Cell Motil Cytoskeleton. 1996;33(4):241–251. doi: 10.1002/(SICI)1097-0169(1996)33:4<241::AID-CM1>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  18. Kelly S. M., Macklem P. T. Direct measurement of intracellular pressure. Am J Physiol. 1991 Mar;260(3 Pt 1):C652–C657. doi: 10.1152/ajpcell.1991.260.3.C652. [DOI] [PubMed] [Google Scholar]
  19. Laliberte A., Gicquaud C. Polymerization of actin by positively charged liposomes. J Cell Biol. 1988 Apr;106(4):1221–1227. doi: 10.1083/jcb.106.4.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nichol J. A., Hutter O. F. Tensile strength and dilatational elasticity of giant sarcolemmal vesicles shed from rabbit muscle. J Physiol. 1996 May 15;493(Pt 1):187–198. doi: 10.1113/jphysiol.1996.sp021374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Novak K. D., Peterson M. D., Reedy M. C., Titus M. A. Dictyostelium myosin I double mutants exhibit conditional defects in pinocytosis. J Cell Biol. 1995 Dec;131(5):1205–1221. doi: 10.1083/jcb.131.5.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shao J. Y., Hochmuth R. M. Micropipette suction for measuring piconewton forces of adhesion and tether formation from neutrophil membranes. Biophys J. 1996 Nov;71(5):2892–2901. doi: 10.1016/S0006-3495(96)79486-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sheetz M. P. Cellular plasma membrane domains. Mol Membr Biol. 1995 Jan-Mar;12(1):89–91. doi: 10.3109/09687689509038501. [DOI] [PubMed] [Google Scholar]
  24. Sheetz M. P., Dai J. Modulation of membrane dynamics and cell motility by membrane tension. Trends Cell Biol. 1996 Mar;6(3):85–89. doi: 10.1016/0962-8924(96)80993-7. [DOI] [PubMed] [Google Scholar]
  25. Sheetz M. P., Singer S. J. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4457–4461. doi: 10.1073/pnas.71.11.4457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tank D. W., Wu E. S., Webb W. W. Enhanced molecular diffusibility in muscle membrane blebs: release of lateral constraints. J Cell Biol. 1982 Jan;92(1):207–212. doi: 10.1083/jcb.92.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Waugh R. E., Bauserman R. G. Physical measurements of bilayer-skeletal separation forces. Ann Biomed Eng. 1995 May-Jun;23(3):308–321. doi: 10.1007/BF02584431. [DOI] [PubMed] [Google Scholar]
  28. Waugh R. E., Song J., Svetina S., Zeks B. Local and nonlocal curvature elasticity in bilayer membranes by tether formation from lecithin vesicles. Biophys J. 1992 Apr;61(4):974–982. doi: 10.1016/S0006-3495(92)81904-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Witke W., Schleicher M., Noegel A. A. Redundancy in the microfilament system: abnormal development of Dictyostelium cells lacking two F-actin cross-linking proteins. Cell. 1992 Jan 10;68(1):53–62. doi: 10.1016/0092-8674(92)90205-q. [DOI] [PubMed] [Google Scholar]
  30. Yanai M., Kenyon C. M., Butler J. P., Macklem P. T., Kelly S. M. Intracellular pressure is a motive force for cell motion in Amoeba proteus. Cell Motil Cytoskeleton. 1996;33(1):22–29. doi: 10.1002/(SICI)1097-0169(1996)33:1<22::AID-CM3>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]