Orientation and dynamics of an antimicrobial peptide in the lipid bilayer by solid-state NMR spectroscopy (original) (raw)

Abstract

The orientation and dynamics of an 18-residue antimicrobial peptide, ovispirin, has been investigated using solid-state NMR spectroscopy. Ovispirin is a cathelicidin-like model peptide (NH(2)-KNLRRIIRKIIHIIKKYG-COOH) with potent, broad-spectrum bactericidal activity. (15)N NMR spectra of oriented ovispirin reconstituted into synthetic phospholipids show that the helical peptide is predominantly oriented in the plane of the lipid bilayer, except for a small portion of the helix, possibly at the C-terminus, which deviates from the surface orientation. This suggests differential insertion of the peptide backbone into the lipid bilayer. (15)N spectra of both oriented and unoriented peptides show a reduced (15)N chemical shift anisotropy at room temperature compared with that of rigid proteins, indicating that the peptide undergoes uniaxial rotational diffusion around the bilayer normal with correlation times shorter than 10(-4) s. This motion is frozen below the gel-to-liquid crystalline transition temperature of the lipids. Ovispirin interacts strongly with the lipid bilayer, as manifested by the significantly reduced (2)H quadrupolar splittings of perdeuterated palmitoyloleoylphosphatidylcholine acyl chains upon peptide binding. Therefore, ovispirin is a curved helix residing in the membrane-water interface that executes rapid uniaxial rotation. These structural and dynamic features are important for understanding the antimicrobial function of this peptide.

Full Text

The Full Text of this article is available as a PDF (553.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bechinger B., Seelig J. Conformational changes of the phosphatidylcholine headgroup due to membrane dehydration. A 2H-NMR study. Chem Phys Lipids. 1991 May-Jun;58(1-2):1–5. doi: 10.1016/0009-3084(91)90105-k. [DOI] [PubMed] [Google Scholar]
  2. Bechinger B. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):157–183. doi: 10.1016/s0005-2736(99)00205-9. [DOI] [PubMed] [Google Scholar]
  3. Bechinger B., Zasloff M., Opella S. J. Structure and dynamics of the antibiotic peptide PGLa in membranes by solution and solid-state nuclear magnetic resonance spectroscopy. Biophys J. 1998 Feb;74(2 Pt 1):981–987. doi: 10.1016/S0006-3495(98)74021-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bechinger B., Zasloff M., Opella S. J. Structure and orientation of the antibiotic peptide magainin in membranes by solid-state nuclear magnetic resonance spectroscopy. Protein Sci. 1993 Dec;2(12):2077–2084. doi: 10.1002/pro.5560021208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bessalle R., Kapitkovsky A., Gorea A., Shalit I., Fridkin M. All-D-magainin: chirality, antimicrobial activity and proteolytic resistance. FEBS Lett. 1990 Nov 12;274(1-2):151–155. doi: 10.1016/0014-5793(90)81351-n. [DOI] [PubMed] [Google Scholar]
  6. Bloom M., Evans E., Mouritsen O. G. Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q Rev Biophys. 1991 Aug;24(3):293–397. doi: 10.1017/s0033583500003735. [DOI] [PubMed] [Google Scholar]
  7. Brender J. R., Taylor D. M., Ramamoorthy A. Orientation of amide-nitrogen-15 chemical shift tensors in peptides: a quantum chemical study. J Am Chem Soc. 2001 Feb 7;123(5):914–922. doi: 10.1021/ja001980q. [DOI] [PubMed] [Google Scholar]
  8. Chen C., Brock R., Luh F., Chou P. J., Larrick J. W., Huang R. F., Huang T. H. The solution structure of the active domain of CAP18--a lipopolysaccharide binding protein from rabbit leukocytes. FEBS Lett. 1995 Aug 14;370(1-2):46–52. doi: 10.1016/0014-5793(95)00792-8. [DOI] [PubMed] [Google Scholar]
  9. Cornell B. A., Separovic F., Baldassi A. J., Smith R. Conformation and orientation of gramicidin a in oriented phospholipid bilayers measured by solid state carbon-13 NMR. Biophys J. 1988 Jan;53(1):67–76. doi: 10.1016/S0006-3495(88)83066-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ehrenstein G., Lecar H. Electrically gated ionic channels in lipid bilayers. Q Rev Biophys. 1977 Feb;10(1):1–34. doi: 10.1017/s0033583500000123. [DOI] [PubMed] [Google Scholar]
  11. Fields C. G., Lloyd D. H., Macdonald R. L., Otteson K. M., Noble R. L. HBTU activation for automated Fmoc solid-phase peptide synthesis. Pept Res. 1991 Mar-Apr;4(2):95–101. [PubMed] [Google Scholar]
  12. Fu R., Cross T. A. Solid-state nuclear magnetic resonance investigation of protein and polypeptide structure. Annu Rev Biophys Biomol Struct. 1999;28:235–268. doi: 10.1146/annurev.biophys.28.1.235. [DOI] [PubMed] [Google Scholar]
  13. Gennaro R., Zanetti M. Structural features and biological activities of the cathelicidin-derived antimicrobial peptides. Biopolymers. 2000;55(1):31–49. doi: 10.1002/1097-0282(2000)55:1<31::AID-BIP40>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
  14. Gómez-Fernández J. C., Goñi F. M., Bach D., Restall C., Chapman D. Protein--lipid interactions. A study of (Ca2+-Mg2+)ATPase reconstituted with synthetic phospholipids. FEBS Lett. 1979 Feb 15;98(2):224–228. doi: 10.1016/0014-5793(79)80187-8. [DOI] [PubMed] [Google Scholar]
  15. He K., Ludtke S. J., Heller W. T., Huang H. W. Mechanism of alamethicin insertion into lipid bilayers. Biophys J. 1996 Nov;71(5):2669–2679. doi: 10.1016/S0006-3495(96)79458-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Heller W. T., Waring A. J., Lehrer R. I., Harroun T. A., Weiss T. M., Yang L., Huang H. W. Membrane thinning effect of the beta-sheet antimicrobial protegrin. Biochemistry. 2000 Jan 11;39(1):139–145. doi: 10.1021/bi991892m. [DOI] [PubMed] [Google Scholar]
  17. Hirsh D. J., Hammer J., Maloy W. L., Blazyk J., Schaefer J. Secondary structure and location of a magainin analogue in synthetic phospholipid bilayers. Biochemistry. 1996 Oct 1;35(39):12733–12741. doi: 10.1021/bi961468a. [DOI] [PubMed] [Google Scholar]
  18. Hong M., Yamaguchi S. Sensitivity-enhanced static 15N NMR of solids by 1h indirect detection. J Magn Reson. 2001 May;150(1):43–48. doi: 10.1006/jmre.2001.2309. [DOI] [PubMed] [Google Scholar]
  19. Huang H. W. Action of antimicrobial peptides: two-state model. Biochemistry. 2000 Jul 25;39(29):8347–8352. doi: 10.1021/bi000946l. [DOI] [PubMed] [Google Scholar]
  20. Kim Y., Valentine K., Opella S. J., Schendel S. L., Cramer W. A. Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel domain in lipid bilayers. Protein Sci. 1998 Feb;7(2):342–348. doi: 10.1002/pro.5560070214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Koenig B. W., Ferretti J. A., Gawrisch K. Site-specific deuterium order parameters and membrane-bound behavior of a peptide fragment from the intracellular domain of HIV-1 gp41. Biochemistry. 1999 May 11;38(19):6327–6334. doi: 10.1021/bi982800g. [DOI] [PubMed] [Google Scholar]
  22. Lee K. C., Hu W., Cross T. A. 2H NMR determination of the global correlation time of the gramicidin channel in a lipid bilayer. Biophys J. 1993 Sep;65(3):1162–1167. doi: 10.1016/S0006-3495(93)81150-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lehrer R. I., Lichtenstein A. K., Ganz T. Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol. 1993;11:105–128. doi: 10.1146/annurev.iy.11.040193.000541. [DOI] [PubMed] [Google Scholar]
  24. Ludtke S. J., He K., Heller W. T., Harroun T. A., Yang L., Huang H. W. Membrane pores induced by magainin. Biochemistry. 1996 Oct 29;35(43):13723–13728. doi: 10.1021/bi9620621. [DOI] [PubMed] [Google Scholar]
  25. Marassi F. M., Ma C., Gesell J. J., Opella S. J. Three-dimensional solid-state NMR spectroscopy is essential for resolution of resonances from in-plane residues in uniformly (15)N-labeled helical membrane proteins in oriented lipid bilayers. J Magn Reson. 2000 May;144(1):156–161. doi: 10.1006/jmre.2000.2036. [DOI] [PubMed] [Google Scholar]
  26. Marassi F. M., Opella S. J. A solid-state NMR index of helical membrane protein structure and topology. J Magn Reson. 2000 May;144(1):150–155. doi: 10.1006/jmre.2000.2035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Marassi F. M., Opella S. J., Juvvadi P., Merrifield R. B. Orientation of cecropin A helices in phospholipid bilayers determined by solid-state NMR spectroscopy. Biophys J. 1999 Dec;77(6):3152–3155. doi: 10.1016/S0006-3495(99)77145-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Marassi F. M., Opella S. J. NMR structural studies of membrane proteins. Curr Opin Struct Biol. 1998 Oct;8(5):640–648. doi: 10.1016/s0959-440x(98)80157-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Marassi F. M., Ramamoorthy A., Opella S. J. Complete resolution of the solid-state NMR spectrum of a uniformly 15N-labeled membrane protein in phospholipid bilayers. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8551–8556. doi: 10.1073/pnas.94.16.8551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Matsuzaki K. Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim Biophys Acta. 1998 Nov 10;1376(3):391–400. doi: 10.1016/s0304-4157(98)00014-8. [DOI] [PubMed] [Google Scholar]
  31. Moll F., 3rd, Cross T. A. Optimizing and characterizing alignment of oriented lipid bilayers containing gramicidin D. Biophys J. 1990 Feb;57(2):351–362. doi: 10.1016/S0006-3495(90)82536-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nicholson L. K., Moll F., Mixon T. E., LoGrasso P. V., Lay J. C., Cross T. A. Solid-state 15N NMR of oriented lipid bilayer bound gramicidin A'. Biochemistry. 1987 Oct 20;26(21):6621–6626. doi: 10.1021/bi00395a009. [DOI] [PubMed] [Google Scholar]
  33. North C. L., Barranger-Mathys M., Cafiso D. S. Membrane orientation of the N-terminal segment of alamethicin determined by solid-state 15N NMR. Biophys J. 1995 Dec;69(6):2392–2397. doi: 10.1016/S0006-3495(95)80108-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Okamura E., Umemura J., Takenaka T. Orientation studies of hydrated dipalmitoylphosphatidylcholine multibilayers by polarized FTIR-ATR spectroscopy. Biochim Biophys Acta. 1990 Jun 11;1025(1):94–98. doi: 10.1016/0005-2736(90)90195-t. [DOI] [PubMed] [Google Scholar]
  35. Oren Z., Shai Y. Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers. 1998;47(6):451–463. doi: 10.1002/(SICI)1097-0282(1998)47:6<451::AID-BIP4>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  36. Pearce J. M., Komoroski R. A. Resolution of phospholipid molecular species by 31P NMR. Magn Reson Med. 1993 Jun;29(6):724–731. doi: 10.1002/mrm.1910290603. [DOI] [PubMed] [Google Scholar]
  37. Pouny Y., Rapaport D., Mor A., Nicolas P., Shai Y. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry. 1992 Dec 15;31(49):12416–12423. doi: 10.1021/bi00164a017. [DOI] [PubMed] [Google Scholar]
  38. Prenner E. J., Lewis R. N., Kondejewski L. H., Hodges R. S., McElhaney R. N. Differential scanning calorimetric study of the effect of the antimicrobial peptide gramicidin S on the thermotropic phase behavior of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol lipid bilayer membranes. Biochim Biophys Acta. 1999 Mar 4;1417(2):211–223. doi: 10.1016/s0005-2736(99)00004-8. [DOI] [PubMed] [Google Scholar]
  39. Roumestand C., Louis V., Aumelas A., Grassy G., Calas B., Chavanieu A. Oligomerization of protegrin-1 in the presence of DPC micelles. A proton high-resolution NMR study. FEBS Lett. 1998 Jan 16;421(3):263–267. doi: 10.1016/s0014-5793(97)01579-2. [DOI] [PubMed] [Google Scholar]
  40. Schibli D. J., Hwang P. M., Vogel H. J. Structure of the antimicrobial peptide tritrpticin bound to micelles: a distinct membrane-bound peptide fold. Biochemistry. 1999 Dec 21;38(51):16749–16755. doi: 10.1021/bi990701c. [DOI] [PubMed] [Google Scholar]
  41. Seelig J., Seelig A. Lipid conformation in model membranes and biological membranes. Q Rev Biophys. 1980 Feb;13(1):19–61. doi: 10.1017/s0033583500000305. [DOI] [PubMed] [Google Scholar]
  42. Smith R., Separovic F., Milne T. J., Whittaker A., Bennett F. M., Cornell B. A., Makriyannis A. Structure and orientation of the pore-forming peptide, melittin, in lipid bilayers. J Mol Biol. 1994 Aug 19;241(3):456–466. doi: 10.1006/jmbi.1994.1520. [DOI] [PubMed] [Google Scholar]
  43. Song Z., Kovacs F. A., Wang J., Denny J. K., Shekar S. C., Quine J. R., Cross T. A. Transmembrane domain of M2 protein from influenza A virus studied by solid-state (15)N polarization inversion spin exchange at magic angle NMR. Biophys J. 2000 Aug;79(2):767–775. doi: 10.1016/S0006-3495(00)76334-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Travis S. M., Anderson N. N., Forsyth W. R., Espiritu C., Conway B. D., Greenberg E. P., McCray P. B., Jr, Lehrer R. I., Welsh M. J., Tack B. F. Bactericidal activity of mammalian cathelicidin-derived peptides. Infect Immun. 2000 May;68(5):2748–2755. doi: 10.1128/iai.68.5.2748-2755.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Ulrich A. S., Watts A. Molecular response of the lipid headgroup to bilayer hydration monitored by 2H-NMR. Biophys J. 1994 May;66(5):1441–1449. doi: 10.1016/S0006-3495(94)80934-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wade D., Boman A., Wåhlin B., Drain C. M., Andreu D., Boman H. G., Merrifield R. B. All-D amino acid-containing channel-forming antibiotic peptides. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4761–4765. doi: 10.1073/pnas.87.12.4761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wang J., Denny J., Tian C., Kim S., Mo Y., Kovacs F., Song Z., Nishimura K., Gan Z., Fu R. Imaging membrane protein helical wheels. J Magn Reson. 2000 May;144(1):162–167. doi: 10.1006/jmre.2000.2037. [DOI] [PubMed] [Google Scholar]
  48. Wishart D. S., Sykes B. D., Richards F. M. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol. 1991 Nov 20;222(2):311–333. doi: 10.1016/0022-2836(91)90214-q. [DOI] [PubMed] [Google Scholar]
  49. Yasin B., Lehrer R. I., Harwig S. S., Wagar E. A. Protegrins: structural requirements for inactivating elementary bodies of Chlamydia trachomatis. Infect Immun. 1996 Nov;64(11):4863–4866. doi: 10.1128/iai.64.11.4863-4866.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Zanetti M., Gennaro R., Romeo D. Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett. 1995 Oct 23;374(1):1–5. doi: 10.1016/0014-5793(95)01050-o. [DOI] [PubMed] [Google Scholar]
  51. Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5449–5453. doi: 10.1073/pnas.84.15.5449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Zhang Y. P., Lewis R. N., Hodges R. S., McElhaney R. N. Peptide models of helical hydrophobic transmembrane segments of membrane proteins. 2. Differential scanning calorimetric and FTIR spectroscopic studies of the interaction of Ac-K2-(LA)12-K2-amide with phosphatidylcholine bilayers. Biochemistry. 1995 Feb 21;34(7):2362–2371. doi: 10.1021/bi00007a032. [DOI] [PubMed] [Google Scholar]