Lymphotoxin-alpha is an important autocrine factor for CD40 + interleukin-4-mediated B-cell activation in normal and atopic donors (original) (raw)
Abstract
Stimulation of human B cells with anti-CD40 + interleukin-4 (IL-4) results not only in proliferation and immunoglobulin E (IgE)-production, but also increased production of the cytokine lymphotoxin-alpha (LT-alpha) (formerly also known as tumour necrosis factor-beta (TNF-beta)). Here, we studied the role of LT-alpha (TNF-beta) in B cells following stimulation with anti-CD40 + IL-4 from normal versus atopic donors. Anti-CD40 + IL-4 stimulation of peripheral blood mononuclear cells (PBMC) from atopic donors resulted in enhanced production of soluble LT-alpha (TNF-beta) and increased membrane LT-alpha (TNF-beta) expression on the B cells compared with normal donors. Functional evaluation of LT-alpha (TNF-beta) in CD40 + IL-4-stimulated B cells shows that recombinant LT-alpha (TNF-beta) induces proliferation of B cells and enhances CD40 + IL-4-mediated B-cell proliferation and IgE synthesis in both normal and atopic donors in a dose-dependent manner. These findings were supported by semiquantitative analysis of epsilon-germline transcripts using reverse transcription-polymerase chain reaction (RT-PCR) showing increased epsilon-germline transcription in the presence of LT-alpha. Furthermore, addition of anti-LT-alpha (anti-TNF-beta) to CD40 + IL-4-stimulated B cells partially inhibited proliferation and IgE synthesis in a dose-dependent manner indicating a role of endogenous LT-alpha (TNF-beta) production by B cells during continued CD40 + IL-4 stimulation. These data suggest that LT-alpha (TNF-beta) plays a potentially significant role during B-cell proliferation and IgE synthesis. Moreover, LT-alpha (TNF-beta) production seems to be differentially regulated in B cells from normal and atopic donors.
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alderson M. R., Armitage R. J., Tough T. W., Strockbine L., Fanslow W. C., Spriggs M. K. CD40 expression by human monocytes: regulation by cytokines and activation of monocytes by the ligand for CD40. J Exp Med. 1993 Aug 1;178(2):669–674. doi: 10.1084/jem.178.2.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Armitage R. J., Macduff B. M., Spriggs M. K., Fanslow W. C. Human B cell proliferation and Ig secretion induced by recombinant CD40 ligand are modulated by soluble cytokines. J Immunol. 1993 May 1;150(9):3671–3680. [PubMed] [Google Scholar]
- Aversa G., Punnonen J., de Vries J. E. The 26-kD transmembrane form of tumor necrosis factor alpha on activated CD4+ T cell clones provides a costimulatory signal for human B cell activation. J Exp Med. 1993 Jun 1;177(6):1575–1585. doi: 10.1084/jem.177.6.1575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baggiolini M., Dahinden C. A. CC chemokines in allergic inflammation. Immunol Today. 1994 Mar;15(3):127–133. doi: 10.1016/0167-5699(94)90156-2. [DOI] [PubMed] [Google Scholar]
- Barrett T. B., Shu G., Clark E. A. CD40 signaling activates CD11a/CD18 (LFA-1)-mediated adhesion in B cells. J Immunol. 1991 Mar 15;146(6):1722–1729. [PubMed] [Google Scholar]
- Boussiotis V. A., Nadler L. M., Strominger J. L., Goldfeld A. E. Tumor necrosis factor alpha is an autocrine growth factor for normal human B cells. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7007–7011. doi: 10.1073/pnas.91.15.7007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Browning J. L., Miatkowski K., Sizing I., Griffiths D., Zafari M., Benjamin C. D., Meier W., Mackay F. Signaling through the lymphotoxin beta receptor induces the death of some adenocarcinoma tumor lines. J Exp Med. 1996 Mar 1;183(3):867–878. doi: 10.1084/jem.183.3.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Browning J. L., Ngam-ek A., Lawton P., DeMarinis J., Tizard R., Chow E. P., Hession C., O'Brine-Greco B., Foley S. F., Ware C. F. Lymphotoxin beta, a novel member of the TNF family that forms a heteromeric complex with lymphotoxin on the cell surface. Cell. 1993 Mar 26;72(6):847–856. doi: 10.1016/0092-8674(93)90574-a. [DOI] [PubMed] [Google Scholar]
- Crowe P. D., VanArsdale T. L., Walter B. N., Ware C. F., Hession C., Ehrenfels B., Browning J. L., Din W. S., Goodwin R. G., Smith C. A. A lymphotoxin-beta-specific receptor. Science. 1994 Apr 29;264(5159):707–710. doi: 10.1126/science.8171323. [DOI] [PubMed] [Google Scholar]
- De Monte L., Thienes C. P., Monticelli S., Busslinger M., Gould H. J., Vercelli D. Regulation of human epsilon germline transcription: role of B-cell-specific activator protein. Int Arch Allergy Immunol. 1997 May-Jul;113(1-3):35–38. doi: 10.1159/000237501. [DOI] [PubMed] [Google Scholar]
- De Togni P., Goellner J., Ruddle N. H., Streeter P. R., Fick A., Mariathasan S., Smith S. C., Carlson R., Shornick L. P., Strauss-Schoenberger J. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science. 1994 Apr 29;264(5159):703–707. doi: 10.1126/science.8171322. [DOI] [PubMed] [Google Scholar]
- Fuleihan R., Ramesh N., Loh R., Jabara H., Rosen R. S., Chatila T., Fu S. M., Stamenkovic I., Geha R. S. Defective expression of the CD40 ligand in X chromosome-linked immunoglobulin deficiency with normal or elevated IgM. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2170–2173. doi: 10.1073/pnas.90.6.2170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Funderud S., Erikstein B., Asheim H. C., Nustad K., Stokke T., Blomhoff H. K., Holte H., Smeland E. B. Functional properties of CD19+ B lymphocytes positively selected from buffy coats by immunomagnetic separation. Eur J Immunol. 1990 Jan;20(1):201–206. doi: 10.1002/eji.1830200129. [DOI] [PubMed] [Google Scholar]
- Gordon J. R., Galli S. J. Mast cells as a source of both preformed and immunologically inducible TNF-alpha/cachectin. Nature. 1990 Jul 19;346(6281):274–276. doi: 10.1038/346274a0. [DOI] [PubMed] [Google Scholar]
- Jabara H. H., Fu S. M., Geha R. S., Vercelli D. CD40 and IgE: synergism between anti-CD40 monoclonal antibody and interleukin 4 in the induction of IgE synthesis by highly purified human B cells. J Exp Med. 1990 Dec 1;172(6):1861–1864. doi: 10.1084/jem.172.6.1861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kansas G. S., Tedder T. F. Transmembrane signals generated through MHC class II, CD19, CD20, CD39, and CD40 antigens induce LFA-1-dependent and independent adhesion in human B cells through a tyrosine kinase-dependent pathway. J Immunol. 1991 Dec 15;147(12):4094–4102. [PubMed] [Google Scholar]
- Karmann K., Hughes C. C., Schechner J., Fanslow W. C., Pober J. S. CD40 on human endothelial cells: inducibility by cytokines and functional regulation of adhesion molecule expression. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4342–4346. doi: 10.1073/pnas.92.10.4342. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kehrl J. H., Alvarez-Mon M., Delsing G. A., Fauci A. S. Lymphotoxin is an important T cell-derived growth factor for human B cells. Science. 1987 Nov 20;238(4830):1144–1146. doi: 10.1126/science.3500512. [DOI] [PubMed] [Google Scholar]
- Kiniwa M., Gately M., Gubler U., Chizzonite R., Fargeas C., Delespesse G. Recombinant interleukin-12 suppresses the synthesis of immunoglobulin E by interleukin-4 stimulated human lymphocytes. J Clin Invest. 1992 Jul;90(1):262–266. doi: 10.1172/JCI115846. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krönke M., Hensel G., Schlüter C., Scheurich P., Schütze S., Pfizenmaier K. Tumor necrosis factor and lymphotoxin gene expression in human tumor cell lines. Cancer Res. 1988 Oct 1;48(19):5417–5421. [PubMed] [Google Scholar]
- Leung D. Y. Role of IgE in atopic dermatitis. Curr Opin Immunol. 1993 Dec;5(6):956–962. doi: 10.1016/0952-7915(93)90112-6. [DOI] [PubMed] [Google Scholar]
- Liu Y. J., Joshua D. E., Williams G. T., Smith C. A., Gordon J., MacLennan I. C. Mechanism of antigen-driven selection in germinal centres. Nature. 1989 Dec 21;342(6252):929–931. doi: 10.1038/342929a0. [DOI] [PubMed] [Google Scholar]
- Paterson R. L., Lack G., Domenico J. M., Delespesse G., Leung D. Y., Finkel T. H., Gelfand E. W. Triggering through CD40 promotes interleukin-4-induced CD23 production and enhanced soluble CD23 release in atopic disease. Eur J Immunol. 1996 Sep;26(9):1979–1984. doi: 10.1002/eji.1830260902. [DOI] [PubMed] [Google Scholar]
- Ryffel B., Di Padova F., Schreier M. H., Le Hir M., Eugster H. P., Quesniaux V. F. Lack of type 2 T cell-independent B cell responses and defect in isotype switching in TNF-lymphotoxin alpha-deficient mice. J Immunol. 1997 Mar 1;158(5):2126–2133. [PubMed] [Google Scholar]
- Sung S. S., Jung L. K., Walters J. A., Jeffes E. W., 3rd, Granger G. A., Fu S. M. Production of lymphotoxin by isolated human tonsillar B lymphocytes and B lymphocyte cell lines. J Clin Invest. 1989 Jul;84(1):236–243. doi: 10.1172/JCI114146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsubata T., Wu J., Honjo T. B-cell apoptosis induced by antigen receptor crosslinking is blocked by a T-cell signal through CD40. Nature. 1993 Aug 12;364(6438):645–648. doi: 10.1038/364645a0. [DOI] [PubMed] [Google Scholar]
- Vercelli D., Geha R. S. Regulation of isotype switching. Curr Opin Immunol. 1992 Dec;4(6):794–797. doi: 10.1016/0952-7915(92)90064-l. [DOI] [PubMed] [Google Scholar]
- Vercelli D., Jabara H. H., Arai K., Yokota T., Geha R. S. Endogenous interleukin 6 plays an obligatory role in interleukin 4-dependent human IgE synthesis. Eur J Immunol. 1989 Aug;19(8):1419–1424. doi: 10.1002/eji.1830190811. [DOI] [PubMed] [Google Scholar]
- Worm M., Geha R. S. Activation of tumor necrosis factor-alpha and lymphotoxin-alpha via anti-CD40 in human B cells. Int Arch Allergy Immunol. 1995 May-Jun;107(1-3):368–369. doi: 10.1159/000237037. [DOI] [PubMed] [Google Scholar]
- Worm M., Geha R. S. CD40 ligation induces lymphotoxin alpha gene expression in human B cells. Int Immunol. 1994 Dec;6(12):1883–1890. doi: 10.1093/intimm/6.12.1883. [DOI] [PubMed] [Google Scholar]
- Worm M., Geha R. S. CD40-mediated lymphotoxin alpha expression in human B cells is tyrosine kinase dependent. Eur J Immunol. 1995 Sep;25(9):2438–2444. doi: 10.1002/eji.1830250905. [DOI] [PubMed] [Google Scholar]