Replicating satellite RNA induces sequence-specific DNA methylation and truncated transcripts in plants (original) (raw)

Abstract

Tobacco plants were transformed with a chimeric transgene comprising sequences encoding beta-glucuronidase (GUS) and the satellite RNA (satRNA) of cereal yellow dwarf luteovirus. When transgenic plants were infected with potato leafroll luteovirus (PLRV), which replicated the transgene-derived satRNA to a high level, the satellite sequence of the GUS:Sat transgene became densely methylated. Within the satellite region, all 86 cytosines in the upper strand and 73 of the 75 cytosines in the lower strand were either partially or fully methylated. In contrast, very low levels of DNA methylation were detected in the satellite sequence of the transgene in uninfected plants and in the flanking nonsatellite sequences in both infected and uninfected plants. Substantial amounts of truncated GUS:Sat RNA accumulated in the satRNA-replicating plants, and most of the molecules terminated at nucleotides within the first 60 bp of the satellite sequence. Whereas this RNA truncation was associated with high levels of satRNA replication, it appeared to be independent of the levels of DNA methylation in the satellite sequence, suggesting that it is not caused by methylation. All the sequenced GUS:Sat DNA molecules were hypermethylated in plants with replicating satRNA despite the phloem restriction of the helper PLRV. Also, small, sense and antisense approximately 22 nt RNAs, derived from the satRNA, were associated with the replicating satellite. These results suggest that the sequence-specific DNA methylation spread into cells in which no satRNA replication occurred and that this was mediated by the spread of unamplified satRNA and/or its associated 22 nt RNA molecules.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashraf S. I., Ip Y. T. Transcriptional control: repression by local chromatin modification. Curr Biol. 1998 Sep 24;8(19):R683–R686. doi: 10.1016/s0960-9822(98)70435-x. [DOI] [PubMed] [Google Scholar]
  2. Barry C., Faugeron G., Rossignol J. L. Methylation induced premeiotically in Ascobolus: coextension with DNA repeat lengths and effect on transcript elongation. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4557–4561. doi: 10.1073/pnas.90.10.4557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clark S. J., Harrison J., Paul C. L., Frommer M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 1994 Aug 11;22(15):2990–2997. doi: 10.1093/nar/22.15.2990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dalmay T., Hamilton A., Rudd S., Angell S., Baulcombe D. C. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell. 2000 May 26;101(5):543–553. doi: 10.1016/s0092-8674(00)80864-8. [DOI] [PubMed] [Google Scholar]
  5. Ellis J. G., Llewellyn D. J., Dennis E. S., Peacock W. J. Maize Adh-1 promoter sequences control anaerobic regulation: addition of upstream promoter elements from constitutive genes is necessary for expression in tobacco. EMBO J. 1987 Jan;6(1):11–16. doi: 10.1002/j.1460-2075.1987.tb04711.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Faria M., Wood C. D., Perrouault L., Nelson J. S., Winter A., White M. R., Helene C., Giovannangeli C. Targeted inhibition of transcription elongation in cells mediated by triplex-forming oligonucleotides. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):3862–3867. doi: 10.1073/pnas.97.8.3862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gleave A. P. A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol Biol. 1992 Dec;20(6):1203–1207. doi: 10.1007/BF00028910. [DOI] [PubMed] [Google Scholar]
  8. Hamilton A. J., Baulcombe D. C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science. 1999 Oct 29;286(5441):950–952. doi: 10.1126/science.286.5441.950. [DOI] [PubMed] [Google Scholar]
  9. Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jones A. L., Thomas C. L., Maule A. J. De novo methylation and co-suppression induced by a cytoplasmically replicating plant RNA virus. EMBO J. 1998 Nov 2;17(21):6385–6393. doi: 10.1093/emboj/17.21.6385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jones L., Hamilton A. J., Voinnet O., Thomas C. L., Maule A. J., Baulcombe D. C. RNA-DNA interactions and DNA methylation in post-transcriptional gene silencing. Plant Cell. 1999 Dec;11(12):2291–2301. doi: 10.1105/tpc.11.12.2291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jorgensen R. A., Atkinson R. G., Forster R. L., Lucas W. J. An RNA-based information superhighway in plants. Science. 1998 Mar 6;279(5356):1486–1487. doi: 10.1126/science.279.5356.1486. [DOI] [PubMed] [Google Scholar]
  13. Kooter JM, Matzke MA, Meyer P. Listening to the silent genes: transgene silencing, gene regulation and pathogen control. Trends Plant Sci. 1999 Sep;4(9):340–347. doi: 10.1016/s1360-1385(99)01467-3. [DOI] [PubMed] [Google Scholar]
  14. Litière K., van Eldik G. J., Jacobs J. J., Van Montagu M., Cornelissen M. Posttranscriptional gene silencing of gn1 in tobacco triggers accumulation of truncated gn1-derived RNA species. RNA. 1999 Oct;5(10):1364–1373. doi: 10.1017/s1355838299990799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Luff B., Pawlowski L., Bender J. An inverted repeat triggers cytosine methylation of identical sequences in Arabidopsis. Mol Cell. 1999 Apr;3(4):505–511. doi: 10.1016/s1097-2765(00)80478-5. [DOI] [PubMed] [Google Scholar]
  16. Mette M. F., van der Winden J., Matzke M. A., Matzke A. J. Production of aberrant promoter transcripts contributes to methylation and silencing of unlinked homologous promoters in trans. EMBO J. 1999 Jan 4;18(1):241–248. doi: 10.1093/emboj/18.1.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Miller W. A., Hercus T., Waterhouse P. M., Gerlach W. L. A satellite RNA of barley yellow dwarf virus contains a novel hammerhead structure in the self-cleavage domain. Virology. 1991 Aug;183(2):711–720. doi: 10.1016/0042-6822(91)91000-7. [DOI] [PubMed] [Google Scholar]
  18. Pélissier T., Thalmeir S., Kempe D., Sänger H. L., Wassenegger M. Heavy de novo methylation at symmetrical and non-symmetrical sites is a hallmark of RNA-directed DNA methylation. Nucleic Acids Res. 1999 Apr 1;27(7):1625–1634. doi: 10.1093/nar/27.7.1625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pélissier T., Wassenegger M. A DNA target of 30 bp is sufficient for RNA-directed DNA methylation. RNA. 2000 Jan;6(1):55–65. doi: 10.1017/s135583820099201x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rountree M. R., Selker E. U. DNA methylation inhibits elongation but not initiation of transcription in Neurospora crassa. Genes Dev. 1997 Sep 15;11(18):2383–2395. doi: 10.1101/gad.11.18.2383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sutherland E., Coe L., Raleigh E. A. McrBC: a multisubunit GTP-dependent restriction endonuclease. J Mol Biol. 1992 May 20;225(2):327–348. doi: 10.1016/0022-2836(92)90925-a. [DOI] [PubMed] [Google Scholar]
  22. Symons R. H. Plant pathogenic RNAs and RNA catalysis. Nucleic Acids Res. 1997 Jul 15;25(14):2683–2689. doi: 10.1093/nar/25.14.2683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tabara H., Sarkissian M., Kelly W. G., Fleenor J., Grishok A., Timmons L., Fire A., Mello C. C. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell. 1999 Oct 15;99(2):123–132. doi: 10.1016/s0092-8674(00)81644-x. [DOI] [PubMed] [Google Scholar]
  24. Voinnet O., Vain P., Angell S., Baulcombe D. C. Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell. 1998 Oct 16;95(2):177–187. doi: 10.1016/s0092-8674(00)81749-3. [DOI] [PubMed] [Google Scholar]
  25. Wang M. B., Cheng Z., Keese P., Graham M. W., Larkin P. J., Waterhouse P. M. Comparison of the coat protein, movement protein and RNA polymerase gene sequences of Australian, Chinese, and American isolates of barely yellow dwarf virus transmitted by Rhopalosiphum padi. Arch Virol. 1998;143(5):1005–1013. doi: 10.1007/s007050050349. [DOI] [PubMed] [Google Scholar]
  26. Wang M. B., Waterhouse P. M. High-efficiency silencing of a beta-glucuronidase gene in rice is correlated with repetitive transgene structure but is independent of DNA methylation. Plant Mol Biol. 2000 May;43(1):67–82. doi: 10.1023/a:1006490331303. [DOI] [PubMed] [Google Scholar]
  27. Wassenegger M., Heimes S., Riedel L., Sänger H. L. RNA-directed de novo methylation of genomic sequences in plants. Cell. 1994 Feb 11;76(3):567–576. doi: 10.1016/0092-8674(94)90119-8. [DOI] [PubMed] [Google Scholar]
  28. Wassenegger M, Pélissier T. Signalling in gene silencing. Trends Plant Sci. 1999 Jun;4(6):207–209. doi: 10.1016/s1360-1385(99)01416-8. [DOI] [PubMed] [Google Scholar]
  29. Waterhouse PM, Smith NA, Wang MB. Virus resistance and gene silencing: killing the messenger. Trends Plant Sci. 1999 Nov;4(11):452–457. doi: 10.1016/s1360-1385(99)01493-4. [DOI] [PubMed] [Google Scholar]
  30. Zamore P. D., Tuschl T., Sharp P. A., Bartel D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000 Mar 31;101(1):25–33. doi: 10.1016/S0092-8674(00)80620-0. [DOI] [PubMed] [Google Scholar]