A gene predisposing to familial thyroid tumors with cell oxyphilia maps to chromosome 19p13.2 (original) (raw)

Abstract

Familial nonmedullary thyroid cancer (FNMTC) is a clinical entity characterized by a phenotype more aggressive than that of its sporadic counterpart. Families with recurrence of nonmedullary thyroid cancer (NMTC) have been repeatedly reported in the literature, and epidemiological data show a very high relative risk for first-degree relatives of probands with thyroid cancer. The transmission of susceptibility to FNMTC is compatible with autosomal dominant inheritance with reduced penetrance, or with complex inheritance. Cases of benign thyroid disease are often found in FNMTC kindreds. We report both the identification of a new entity of FNMTC and the mapping of the responsible gene, named "TCO" (thyroid tumors with cell oxyphilia), in a French pedigree with multiple cases of multinodular goiter and NMTC. TCO was mapped to chromosome 19p13.2 by linkage analysis with a whole-genome panel of microsatellite markers. Interestingly, both the benign and malignant thyroid tumors in this family exhibit some extent of cell oxyphilia, which, until now, had not been described in the FNMTC. These findings suggest that the relatives of patients affected with sporadic NMTC with cell oxyphilia should be carefully investigated.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashworth L. K., Batzer M. A., Brandriff B., Branscomb E., de Jong P., Garcia E., Garnes J. A., Gordon L. A., Lamerdin J. E., Lennon G. An integrated metric physical map of human chromosome 19. Nat Genet. 1995 Dec;11(4):422–427. doi: 10.1038/ng1295-422. [DOI] [PubMed] [Google Scholar]
  2. Bignell G. R., Canzian F., Shayeghi M., Stark M., Shugart Y. Y., Biggs P., Mangion J., Hamoudi R., Rosenblatt J., Buu P. Familial nontoxic multinodular thyroid goiter locus maps to chromosome 14q but does not account for familial nonmedullary thyroid cancer. Am J Hum Genet. 1997 Nov;61(5):1123–1130. doi: 10.1086/301610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bongarzone I., Pierotti M. A., Monzini N., Mondellini P., Manenti G., Donghi R., Pilotti S., Grieco M., Santoro M., Fusco A. High frequency of activation of tyrosine kinase oncogenes in human papillary thyroid carcinoma. Oncogene. 1989 Dec;4(12):1457–1462. [PubMed] [Google Scholar]
  4. Burgess J. R., Duffield A., Wilkinson S. J., Ware R., Greenaway T. M., Percival J., Hoffman L. Two families with an autosomal dominant inheritance pattern for papillary carcinoma of the thyroid. J Clin Endocrinol Metab. 1997 Feb;82(2):345–348. doi: 10.1210/jcem.82.2.3789. [DOI] [PubMed] [Google Scholar]
  5. Collin G. B., Münch A., Mu J. L., Naggert J. K., Olsen A. S., Nishina P. M. Physical and genetic mapping of novel microsatellite polymorphisms on human chromosome 19. Genomics. 1996 Oct 1;37(1):125–130. doi: 10.1006/geno.1996.0529. [DOI] [PubMed] [Google Scholar]
  6. Cooper D. S., Axelrod L., DeGroot L. J., Vickery A. L., Jr, Maloof F. Congenital goiter and the development of metastatic follicular carcinoma with evidence for a leak of nonhormonal iodide: clinical, pathological, kinetic, and biochemical studies and a review of the literature. J Clin Endocrinol Metab. 1981 Feb;52(2):294–306. doi: 10.1210/jcem-52-2-294. [DOI] [PubMed] [Google Scholar]
  7. Couch R. M., Hughes I. A., DeSa D. J., Schiffrin A., Guyda H., Winter J. S. An autosomal dominant form of adolescent multinodular goiter. Am J Hum Genet. 1986 Dec;39(6):811–816. [PMC free article] [PubMed] [Google Scholar]
  8. Di Renzo M. F., Olivero M., Ferro S., Prat M., Bongarzone I., Pilotti S., Belfiore A., Costantino A., Vigneri R., Pierotti M. A. Overexpression of the c-MET/HGF receptor gene in human thyroid carcinomas. Oncogene. 1992 Dec;7(12):2549–2553. [PubMed] [Google Scholar]
  9. Duprez L., Parma J., Van Sande J., Allgeier A., Leclère J., Schvartz C., Delisle M. J., Decoulx M., Orgiazzi J., Dumont J. Germline mutations in the thyrotropin receptor gene cause non-autoimmune autosomal dominant hyperthyroidism. Nat Genet. 1994 Jul;7(3):396–401. doi: 10.1038/ng0794-396. [DOI] [PubMed] [Google Scholar]
  10. Goldgar D. E., Easton D. F., Cannon-Albright L. A., Skolnick M. H. Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst. 1994 Nov 2;86(21):1600–1608. doi: 10.1093/jnci/86.21.1600. [DOI] [PubMed] [Google Scholar]
  11. Gorson D. Familial papillary carcinoma of the thyroid. Thyroid. 1992 Summer;2(2):131–132. doi: 10.1089/thy.1992.2.131. [DOI] [PubMed] [Google Scholar]
  12. Grossman R. F., Tu S. H., Duh Q. Y., Siperstein A. E., Novosolov F., Clark O. H. Familial nonmedullary thyroid cancer. An emerging entity that warrants aggressive treatment. Arch Surg. 1995 Aug;130(8):892–899. doi: 10.1001/archsurg.1995.01430080094015. [DOI] [PubMed] [Google Scholar]
  13. Harach H. R., Williams G. T., Williams E. D. Familial adenomatous polyposis associated thyroid carcinoma: a distinct type of follicular cell neoplasm. Histopathology. 1994 Dec;25(6):549–561. doi: 10.1111/j.1365-2559.1994.tb01374.x. [DOI] [PubMed] [Google Scholar]
  14. Katoh R., Harach H. R., Williams E. D. Solitary, multiple, and familial oxyphil tumours of the thyroid gland. J Pathol. 1998 Nov;186(3):292–299. doi: 10.1002/(sici)1096-9896(1998110)186:3<292::aid-path190>3.0.co;2-y. [DOI] [PubMed] [Google Scholar]
  15. Kraimps J. L., Bouin-Pineau M. H., Amati P., Mothes D., Bonneau D., Maréchaud R., Barbier J. Familial papillary carcinoma of the thyroid. Surgery. 1997 Jun;121(6):715–718. doi: 10.1016/s0039-6060(97)90063-5. [DOI] [PubMed] [Google Scholar]
  16. Kruglyak L., Daly M. J., Reeve-Daly M. P., Lander E. S. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet. 1996 Jun;58(6):1347–1363. [PMC free article] [PubMed] [Google Scholar]
  17. Lathrop G. M., Lalouel J. M. Easy calculations of lod scores and genetic risks on small computers. Am J Hum Genet. 1984 Mar;36(2):460–465. [PMC free article] [PubMed] [Google Scholar]
  18. Liaw D., Marsh D. J., Li J., Dahia P. L., Wang S. I., Zheng Z., Bose S., Call K. M., Tsou H. C., Peacocke M. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet. 1997 May;16(1):64–67. doi: 10.1038/ng0597-64. [DOI] [PubMed] [Google Scholar]
  19. Lote K., Andersen K., Nordal E., Brennhovd I. O. Familial occurrence of papillary thyroid carcinoma. Cancer. 1980 Sep 1;46(5):1291–1297. doi: 10.1002/1097-0142(19800901)46:5<1291::aid-cncr2820460534>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
  20. Nakashima M., Eguchi K., Ishikawa N., Yamashita I., Sakai M., Ida H., Kawabe Y., Ito K., Nagataki S. Expression of adhesion molecule ICAM-1 (CD54) in thyroid papillary adenocarcinoma. J Endocrinol Invest. 1994 Dec;17(11):843–848. doi: 10.1007/BF03347789. [DOI] [PubMed] [Google Scholar]
  21. Ott J. Computer-simulation methods in human linkage analysis. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4175–4178. doi: 10.1073/pnas.86.11.4175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ozaki O., Ito K., Kobayashi K., Suzuki A., Manabe Y., Hosoda Y. Familial occurrence of differentiated, nonmedullary thyroid carcinoma. World J Surg. 1988 Aug;12(4):565–571. doi: 10.1007/BF01655453. [DOI] [PubMed] [Google Scholar]
  23. Parma J., Duprez L., Van Sande J., Cochaux P., Gervy C., Mockel J., Dumont J., Vassart G. Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature. 1993 Oct 14;365(6447):649–651. doi: 10.1038/365649a0. [DOI] [PubMed] [Google Scholar]
  24. Pasini B., Ceccherini I., Romeo G. RET mutations in human disease. Trends Genet. 1996 Apr;12(4):138–144. doi: 10.1016/0168-9525(96)10012-3. [DOI] [PubMed] [Google Scholar]
  25. Stoffer S. S., Van Dyke D. L., Bach J. V., Szpunar W., Weiss L. Familial papillary carcinoma of the thyroid. Am J Med Genet. 1986 Dec;25(4):775–782. doi: 10.1002/ajmg.1320250415. [DOI] [PubMed] [Google Scholar]