Localized upregulation of a new expansin gene predicts the site of leaf formation in the tomato meristem (original) (raw)

Abstract

Expansins are extracellular proteins that increase plant cell wall extensibility in vitro and are thought to be involved in cell expansion. We showed in a previous study that administration of an exogenous expansin protein can trigger the initiation of leaflike structures on the shoot apical meristem of tomato. Here, we studied the expression patterns of two tomato expansin genes, LeExp2 and LeExp18. LeExp2 is preferentially expressed in expanding tissues, whereas LeExp18 is expressed preferentially in tissues with meristematic activity. In situ hybridization experiments showed that LeExp18 expression is elevated in a group of cells, called I1, which is the site of incipient leaf primordium initiation. Thus, LeExp18 expression is a molecular marker for leaf initiation, predicting the site of primordium formation at a time before histological changes can be detected. We propose a model for the regulation of phyllotaxis that postulates a crucial role for expansin in leaf primordium initiation.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brandstädter J., Rossbach C., Theres K. The pattern of histone H4 expression in the tomato shoot apex changes during development. Planta. 1994;192(1):69–74. doi: 10.1007/BF00198694. [DOI] [PubMed] [Google Scholar]
  2. Chen J. J., Janssen B. J., Williams A., Sinha N. A gene fusion at a homeobox locus: alterations in leaf shape and implications for morphological evolution. Plant Cell. 1997 Aug;9(8):1289–1304. doi: 10.1105/tpc.9.8.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cho H. T., Kende H. Expression of expansin genes is correlated with growth in deepwater rice. Plant Cell. 1997 Sep;9(9):1661–1671. doi: 10.1105/tpc.9.9.1661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cosgrove D. J. Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. Plant Cell. 1997 Jul;9(7):1031–1041. doi: 10.1105/tpc.9.7.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fleming A. J., Mandel T., Roth I., Kuhlemeier C. The patterns of gene expression in the tomato shoot apical meristem. Plant Cell. 1993 Mar;5(3):297–309. doi: 10.1105/tpc.5.3.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fleming A. J., Manzara T., Gruissem W., Kuhlemeier C. Fluorescent imaging of GUS activity and RT-PCR analysis of gene expression in the shoot apical meristem. Plant J. 1996 Oct;10(4):745–754. doi: 10.1046/j.1365-313x.1996.10040745.x. [DOI] [PubMed] [Google Scholar]
  7. Hareven D., Gutfinger T., Parnis A., Eshed Y., Lifschitz E. The making of a compound leaf: genetic manipulation of leaf architecture in tomato. Cell. 1996 Mar 8;84(5):735–744. doi: 10.1016/s0092-8674(00)81051-x. [DOI] [PubMed] [Google Scholar]
  8. Hemerly A., Engler J. de A., Bergounioux C., Van Montagu M., Engler G., Inzé D., Ferreira P. Dominant negative mutants of the Cdc2 kinase uncouple cell division from iterative plant development. EMBO J. 1995 Aug 15;14(16):3925–3936. doi: 10.1002/j.1460-2075.1995.tb00064.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jacobs T. Why Do Plant Cells Divide? Plant Cell. 1997 Jul;9(7):1021–1029. doi: 10.1105/tpc.9.7.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Keller E., Cosgrove D. J. Expansins in growing tomato leaves. Plant J. 1995 Dec;8(6):795–802. doi: 10.1046/j.1365-313x.1995.8060795.x. [DOI] [PubMed] [Google Scholar]
  11. Kende H., Zeevaart JAD. The Five "Classical" Plant Hormones. Plant Cell. 1997 Jul;9(7):1197–1210. doi: 10.1105/tpc.9.7.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lincoln C., Long J., Yamaguchi J., Serikawa K., Hake S. A knotted1-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell. 1994 Dec;6(12):1859–1876. doi: 10.1105/tpc.6.12.1859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Long J. A., Moan E. I., Medford J. I., Barton M. K. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature. 1996 Jan 4;379(6560):66–69. doi: 10.1038/379066a0. [DOI] [PubMed] [Google Scholar]
  14. Mandel T., Fleming A. J., Krähenbühl R., Kuhlemeier C. Definition of constitutive gene expression in plants: the translation initiation factor 4A gene as a model. Plant Mol Biol. 1995 Dec;29(5):995–1004. doi: 10.1007/BF00014972. [DOI] [PubMed] [Google Scholar]
  15. McQueen-Mason S., Cosgrove D. J. Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6574–6578. doi: 10.1073/pnas.91.14.6574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McQueen-Mason S., Durachko D. M., Cosgrove D. J. Two endogenous proteins that induce cell wall extension in plants. Plant Cell. 1992 Nov;4:1425–1433. doi: 10.1105/tpc.4.11.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Meinhardt H. Models of biological pattern formation: common mechanism in plant and animal development. Int J Dev Biol. 1996 Feb;40(1):123–134. [PubMed] [Google Scholar]
  18. Meyerowitz E. M. Genetic control of cell division patterns in developing plants. Cell. 1997 Feb 7;88(3):299–308. doi: 10.1016/s0092-8674(00)81868-1. [DOI] [PubMed] [Google Scholar]
  19. Poethig R. S. Leaf morphogenesis in flowering plants. Plant Cell. 1997 Jul;9(7):1077–1087. doi: 10.1105/tpc.9.7.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rose J. K., Lee H. H., Bennett A. B. Expression of a divergent expansin gene is fruit-specific and ripening-regulated. Proc Natl Acad Sci U S A. 1997 May 27;94(11):5955–5960. doi: 10.1073/pnas.94.11.5955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Selker J. M., Steucek G. L., Green P. B. Biophysical mechanisms for morphogenetic progressions at the shoot apex. Dev Biol. 1992 Sep;153(1):29–43. doi: 10.1016/0012-1606(92)90089-y. [DOI] [PubMed] [Google Scholar]
  22. Shcherban T. Y., Shi J., Durachko D. M., Guiltinan M. J., McQueen-Mason S. J., Shieh M., Cosgrove D. J. Molecular cloning and sequence analysis of expansins--a highly conserved, multigene family of proteins that mediate cell wall extension in plants. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9245–9249. doi: 10.1073/pnas.92.20.9245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Smith L. G., Greene B., Veit B., Hake S. A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development. 1992 Sep;116(1):21–30. doi: 10.1242/dev.116.1.21. [DOI] [PubMed] [Google Scholar]
  24. Smith L. G., Hake S., Sylvester A. W. The tangled-1 mutation alters cell division orientations throughout maize leaf development without altering leaf shape. Development. 1996 Feb;122(2):481–489. doi: 10.1242/dev.122.2.481. [DOI] [PubMed] [Google Scholar]
  25. Szymkowiak Eugene J., Sussex Ian M. WHAT CHIMERAS CAN TELL US ABOUT PLANT DEVELOPMENT. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):351–376. doi: 10.1146/annurev.arplant.47.1.351. [DOI] [PubMed] [Google Scholar]
  26. op den Camp R. G., Kuhlemeier C. Aldehyde dehydrogenase in tobacco pollen. Plant Mol Biol. 1997 Oct;35(3):355–365. doi: 10.1023/a:1005889129491. [DOI] [PubMed] [Google Scholar]