Intron loss and gain during evolution of the catalase gene family in angiosperms (original) (raw)
Abstract
Angiosperms (flowering plants), including both monocots and dicots, contain small catalase gene families. In the dicot, Arabidopsis thaliana, two catalase (CAT) genes, CAT1 and CAT3, are tightly linked on chromosome 1 and a third, CAT2, which is more similar to CAT1 than to CAT3, is unlinked on chromosome 4. Comparison of positions and numbers of introns among 13 angiosperm catalase genomic sequences indicates that intron positions are conserved, and suggests that an ancestral catalase gene common to monocots and dicots contained seven introns. Arabidopsis CAT2 has seven introns; both CAT1 and CAT3 have six introns in positions conserved with CAT2, but each has lost a different intron. We suggest the following sequence of events during the evolution of the Arabidopsis catalase gene family. An initial duplication of an ancestral catalase gene gave rise to CAT3 and CAT1. CAT1 then served as the template for a second duplication, yielding CAT2. Intron losses from CAT1 and CAT3 followed these duplications. One subclade of monocot catalases has lost all but the 5'-most and 3'-most introns, which is consistent with a mechanism of intron loss by replacement of an ancestral intron-containing gene with a reverse-transcribed DNA copy of a fully spliced mRNA. Following this event of concerted intron loss, the Oryza sativa (rice, a monocot) CAT1 lineage acquired an intron in a novel position, consistent with a mechanism of intron gain at proto-splice sites.
Full Text
The Full Text of this article is available as a PDF (207.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baltimore D. Retroviruses and retrotransposons: the role of reverse transcription in shaping the eukaryotic genome. Cell. 1985 Mar;40(3):481–482. doi: 10.1016/0092-8674(85)90190-4. [DOI] [PubMed] [Google Scholar]
- Boeke J. D., Garfinkel D. J., Styles C. A., Fink G. R. Ty elements transpose through an RNA intermediate. Cell. 1985 Mar;40(3):491–500. doi: 10.1016/0092-8674(85)90197-7. [DOI] [PubMed] [Google Scholar]
- Callis J., Fromm M., Walbot V. Introns increase gene expression in cultured maize cells. Genes Dev. 1987 Dec;1(10):1183–1200. doi: 10.1101/gad.1.10.1183. [DOI] [PubMed] [Google Scholar]
- Clegg M. T., Cummings M. P., Durbin M. L. The evolution of plant nuclear genes. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7791–7798. doi: 10.1073/pnas.94.15.7791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen G., Rapatz W., Ruis H. Sequence of the Saccharomyces cerevisiae CTA1 gene and amino acid sequence of catalase A derived from it. Eur J Biochem. 1988 Sep 1;176(1):159–163. doi: 10.1111/j.1432-1033.1988.tb14263.x. [DOI] [PubMed] [Google Scholar]
- Derr L. K., Strathern J. N., Garfinkel D. J. RNA-mediated recombination in S. cerevisiae. Cell. 1991 Oct 18;67(2):355–364. doi: 10.1016/0092-8674(91)90187-4. [DOI] [PubMed] [Google Scholar]
- Dibb N. J., Newman A. J. Evidence that introns arose at proto-splice sites. EMBO J. 1989 Jul;8(7):2015–2021. doi: 10.1002/j.1460-2075.1989.tb03609.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Didion T., Roggenkamp R. Targeting signal of the peroxisomal catalase in the methylotrophic yeast Hansenula polymorpha. FEBS Lett. 1992 Jun 1;303(2-3):113–116. doi: 10.1016/0014-5793(92)80500-g. [DOI] [PubMed] [Google Scholar]
- Dietmaier W., Fabry S. Analysis of the introns in genes encoding small G proteins. Curr Genet. 1994 Nov-Dec;26(5-6):497–505. doi: 10.1007/BF00309940. [DOI] [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
- Fowler T., Rey M. W., Vähä-Vahe P., Power S. D., Berka R. M. The catR gene encoding a catalase from Aspergillus niger: primary structure and elevated expression through increased gene copy number and use of a strong promoter. Mol Microbiol. 1993 Sep;9(5):989–998. doi: 10.1111/j.1365-2958.1993.tb01228.x. [DOI] [PubMed] [Google Scholar]
- Fritz C. C., Wolter F. P., Schenkemeyer V., Herget T., Schreier P. H. The gene family encoding the ribulose-(1,5)-bisphosphate carboxylase/oxygenase (Rubisco) small subunit of potato. Gene. 1993 Dec 31;137(2):271–274. doi: 10.1016/0378-1119(93)90019-y. [DOI] [PubMed] [Google Scholar]
- Frugoli J. A., Zhong H. H., Nuccio M. L., McCourt P., McPeek M. A., Thomas T. L., McClung C. R. Catalase is encoded by a multigene family in Arabidopsis thaliana (L.) Heynh. Plant Physiol. 1996 Sep;112(1):327–336. doi: 10.1104/pp.112.1.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fu H., Kim S. Y., Park W. D. A potato Sus3 sucrose synthase gene contains a context-dependent 3' element and a leader intron with both positive and negative tissue-specific effects. Plant Cell. 1995 Sep;7(9):1395–1403. doi: 10.1105/tpc.7.9.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fu H., Kim S. Y., Park W. D. High-level tuber expression and sucrose inducibility of a potato Sus4 sucrose synthase gene require 5' and 3' flanking sequences and the leader intron. Plant Cell. 1995 Sep;7(9):1387–1394. doi: 10.1105/tpc.7.9.1387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guan L., Scandalios J. G. Molecular evolution of maize catalases and their relationship to other eukaryotic and prokaryotic catalases. J Mol Evol. 1996 May;42(5):570–579. doi: 10.1007/BF02352287. [DOI] [PubMed] [Google Scholar]
- Huang N., Sutliff T. D., Litts J. C., Rodriguez R. L. Classification and characterization of the rice alpha-amylase multigene family. Plant Mol Biol. 1990 May;14(5):655–668. doi: 10.1007/BF00016499. [DOI] [PubMed] [Google Scholar]
- Häger K. P., Müller B., Wind C., Erbach S., Fischer H. Evolution of legumin genes: loss of an ancestral intron at the beginning of angiosperm diversification. FEBS Lett. 1996 May 27;387(1):94–98. doi: 10.1016/0014-5793(96)00477-2. [DOI] [PubMed] [Google Scholar]
- Kao C. Y., Cocciolone S. M., Vasil I. K., McCarty D. R. Localization and interaction of the cis-acting elements for abscisic acid, VIVIPAROUS1, and light activation of the C1 gene of maize. Plant Cell. 1996 Jul;8(7):1171–1179. doi: 10.1105/tpc.8.7.1171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konieczny A., Voytas D. F., Cummings M. P., Ausubel F. M. A superfamily of Arabidopsis thaliana retrotransposons. Genetics. 1991 Apr;127(4):801–809. doi: 10.1093/genetics/127.4.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kumar V., Trick M. Sequence complexity of the S receptor kinase gene family in Brassica. Mol Gen Genet. 1993 Nov;241(3-4):440–446. doi: 10.1007/BF00284698. [DOI] [PubMed] [Google Scholar]
- Kwiatowski J., Krawczyk M., Kornacki M., Bailey K., Ayala F. J. Evidence against the exon theory of genes derived from the triose-phosphate isomerase gene. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8503–8506. doi: 10.1073/pnas.92.18.8503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liaud M. F., Brandt U., Cerff R. The marine red alga Chondrus crispus has a highly divergent beta-tubulin gene with a characteristic 5' intron: functional and evolutionary implications. Plant Mol Biol. 1995 May;28(2):313–325. doi: 10.1007/BF00020250. [DOI] [PubMed] [Google Scholar]
- Logsdon J. M., Jr, Tyshenko M. G., Dixon C., D-Jafari J., Walker V. K., Palmer J. D. Seven newly discovered intron positions in the triose-phosphate isomerase gene: evidence for the introns-late theory. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8507–8511. doi: 10.1073/pnas.92.18.8507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McClung C. R. Regulation of catalases in Arabidopsis. Free Radic Biol Med. 1997;23(3):489–496. doi: 10.1016/s0891-5849(97)00109-3. [DOI] [PubMed] [Google Scholar]
- McDowell J. M., Huang S., McKinney E. C., An Y. Q., Meagher R. B. Structure and evolution of the actin gene family in Arabidopsis thaliana. Genetics. 1996 Feb;142(2):587–602. doi: 10.1093/genetics/142.2.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meagher R. B. Divergence and differential expression of actin gene families in higher plants. Int Rev Cytol. 1991;125:139–163. doi: 10.1016/s0074-7696(08)61218-8. [DOI] [PubMed] [Google Scholar]
- Murray W. W., Rachubinski R. A. Nucleotide sequence of peroxisomal catalase from the yeast Candida tropicalis pK233: identification of an upstream BamHI site polymorphism. Nucleic Acids Res. 1989 May 11;17(9):3600–3600. doi: 10.1093/nar/17.9.3600. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakagawa C. W., Mutoh N., Hayashi Y. Transcriptional regulation of catalase gene in the fission yeast Schizosaccharomyces pombe: molecular cloning of the catalase gene and northern blot analyses of the transcript. J Biochem. 1995 Jul;118(1):109–116. doi: 10.1093/oxfordjournals.jbchem.a124864. [DOI] [PubMed] [Google Scholar]
- Nakashima H., Yamamoto M., Goto K., Osumi T., Hashimoto T., Endo H. Isolation and characterization of the rat catalase-encoding gene. Gene. 1989 Jul 15;79(2):279–288. doi: 10.1016/0378-1119(89)90210-2. [DOI] [PubMed] [Google Scholar]
- Navarro R. E., Stringer M. A., Hansberg W., Timberlake W. E., Aguirre J. catA, a new Aspergillus nidulans gene encoding a developmentally regulated catalase. Curr Genet. 1996 Mar;29(4):352–359. [PubMed] [Google Scholar]
- Okada H., Ueda M., Sugaya T., Atomi H., Mozaffar S., Hishida T., Teranishi Y., Okazaki K., Takechi T., Kamiryo T. Catalase gene of the yeast Candida tropicalis. Sequence analysis and comparison with peroxisomal and cytosolic catalases from other sources. Eur J Biochem. 1987 Dec 30;170(1-2):105–110. doi: 10.1111/j.1432-1033.1987.tb13673.x. [DOI] [PubMed] [Google Scholar]
- Orr E. C., Bewley G. C., Orr W. C. cDNA and deduced amino acid sequence of Drosophila catalase. Nucleic Acids Res. 1990 Jun 25;18(12):3663–3663. doi: 10.1093/nar/18.12.3663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quan F., Korneluk R. G., Tropak M. B., Gravel R. A. Isolation and characterization of the human catalase gene. Nucleic Acids Res. 1986 Jul 11;14(13):5321–5335. doi: 10.1093/nar/14.13.5321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ryals J. A., Neuenschwander U. H., Willits M. G., Molina A., Steiner H. Y., Hunt M. D. Systemic Acquired Resistance. Plant Cell. 1996 Oct;8(10):1809–1819. doi: 10.1105/tpc.8.10.1809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SanMiguel P., Tikhonov A., Jin Y. K., Motchoulskaia N., Zakharov D., Melake-Berhan A., Springer P. S., Edwards K. J., Lee M., Avramova Z. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996 Nov 1;274(5288):765–768. doi: 10.1126/science.274.5288.765. [DOI] [PubMed] [Google Scholar]
- Shaffer J. B., Preston K. E., Shepard B. A. Nucleotide and deduced amino acid sequences of mouse catalase: molecular analysis of a low activity mutant. Nucleic Acids Res. 1990 Aug 25;18(16):4941–4941. doi: 10.1093/nar/18.16.4941. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spevak W., Hartig A., Meindl P., Ruis H. Heme control region of the catalase T gene of the yeast Saccharomyces cerevisiae. Mol Gen Genet. 1986 Apr;203(1):73–78. doi: 10.1007/BF00330386. [DOI] [PubMed] [Google Scholar]
- Subramani S. Protein import into peroxisomes and biogenesis of the organelle. Annu Rev Cell Biol. 1993;9:445–478. doi: 10.1146/annurev.cb.09.110193.002305. [DOI] [PubMed] [Google Scholar]
- Suzuki M., Ario T., Hattori T., Nakamura K., Asahi T. Isolation and characterization of two tightly linked catalase genes from castor bean that are differentially regulated. Plant Mol Biol. 1994 Jun;25(3):507–516. doi: 10.1007/BF00043878. [DOI] [PubMed] [Google Scholar]
- Voytas D. F., Ausubel F. M. A copia-like transposable element family in Arabidopsis thaliana. Nature. 1988 Nov 17;336(6196):242–244. doi: 10.1038/336242a0. [DOI] [PubMed] [Google Scholar]
- Waterston R., Martin C., Craxton M., Huynh C., Coulson A., Hillier L., Durbin R., Green P., Shownkeen R., Halloran N. A survey of expressed genes in Caenorhabditis elegans. Nat Genet. 1992 May;1(2):114–123. doi: 10.1038/ng0592-114. [DOI] [PubMed] [Google Scholar]
- Willekens H., Langebartels C., Tiré C., Van Montagu M., Inzé D., Van Camp W. Differential expression of catalase genes in Nicotiana plumbaginifolia (L.). Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10450–10454. doi: 10.1073/pnas.91.22.10450. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willekens H., Villarroel R., Van Montagu M., Inzé D., Van Camp W. Molecular identification of catalases from Nicotiana plumbaginifolia (L.). FEBS Lett. 1994 Sep 19;352(1):79–83. doi: 10.1016/0014-5793(94)00923-6. [DOI] [PubMed] [Google Scholar]
- Wilson R., Ainscough R., Anderson K., Baynes C., Berks M., Bonfield J., Burton J., Connell M., Copsey T., Cooper J. 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature. 1994 Mar 3;368(6466):32–38. doi: 10.1038/368032a0. [DOI] [PubMed] [Google Scholar]
- Wright D. A., Ke N., Smalle J., Hauge B. M., Goodman H. M., Voytas D. F. Multiple non-LTR retrotransposons in the genome of Arabidopsis thaliana. Genetics. 1996 Feb;142(2):569–578. doi: 10.1093/genetics/142.2.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang Y., Shah J., Klessig D. F. Signal perception and transduction in plant defense responses. Genes Dev. 1997 Jul 1;11(13):1621–1639. doi: 10.1101/gad.11.13.1621. [DOI] [PubMed] [Google Scholar]
- Yuan H. T., Bingle C. D., Kelly F. J. Differential patterns of antioxidant enzyme mRNA expression in guinea pig lung and liver during development. Biochim Biophys Acta. 1996 Mar 1;1305(3):163–171. doi: 10.1016/0167-4781(95)00214-6. [DOI] [PubMed] [Google Scholar]
- Zhong H. H., Resnick A. S., Straume M., Robertson McClung C. Effects of synergistic signaling by phytochrome A and cryptochrome1 on circadian clock-regulated catalase expression. Plant Cell. 1997 Jun;9(6):947–955. doi: 10.1105/tpc.9.6.947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhong H. H., Young J. C., Pease E. A., Hangarter R. P., McClung C. R. Interactions between Light and the Circadian Clock in the Regulation of CAT2 Expression in Arabidopsis. Plant Physiol. 1994 Mar;104(3):889–898. doi: 10.1104/pp.104.3.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Ossowski I., Hausner G., Loewen P. C. Molecular evolutionary analysis based on the amino acid sequence of catalase. J Mol Evol. 1993 Jul;37(1):71–76. doi: 10.1007/BF00170464. [DOI] [PubMed] [Google Scholar]