Beneficial mutations, hitchhiking and the evolution of mutation rates in sexual populations (original) (raw)
Abstract
Natural selection acts in three ways on heritable variation for mutation rates. A modifier allele that increases the mutation rate is (i) disfavored due to association with deleterious mutations, but is also favored due to (ii) association with beneficial mutations and (iii) the reduced costs of lower fidelity replication. When a unique beneficial mutation arises and sweeps to fixation, genetic hitchhiking may cause a substantial change in the frequency of a modifier of mutation rate. In previous studies of the evolution of mutation rates in sexual populations, this effect has been underestimated. This article models the long-term effect of a series of such hitchhiking events and determines the resulting strength of indirect selection on the modifier. This is compared to the indirect selection due to deleterious mutations, when both types of mutations are randomly scattered over a given genetic map. Relative to an asexual population, increased levels of recombination reduce the effects of beneficial mutations more rapidly than those of deleterious mutations. However, the role of beneficial mutations in determining the evolutionarily stable mutation rate may still be significant if the function describing the cost of high-fidelity replication has a shallow gradient.
Full Text
The Full Text of this article is available as a PDF (135.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ATWOOD K. C., SCHNEIDER L. K., RYAN F. J. Selective mechanisms in bacteria. Cold Spring Harb Symp Quant Biol. 1951;16:345–355. doi: 10.1101/sqb.1951.016.01.026. [DOI] [PubMed] [Google Scholar]
- Barton N. H. Linkage and the limits to natural selection. Genetics. 1995 Jun;140(2):821–841. doi: 10.1093/genetics/140.2.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bessman M. J., Muzyczka N., Goodman M. F., Schnaar R. L. Studies on the biochemical basis of spontaneous mutation. II. The incorporation of a base and its analogue into DNA by wild-type, mutator and antimutator DNA polymerases. J Mol Biol. 1974 Sep 15;88(2):409–421. doi: 10.1016/0022-2836(74)90491-4. [DOI] [PubMed] [Google Scholar]
- Charlesworth B., Langley C. H. The evolution of self-regulated transposition of transposable elements. Genetics. 1986 Feb;112(2):359–383. doi: 10.1093/genetics/112.2.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Charlesworth B. The effect of background selection against deleterious mutations on weakly selected, linked variants. Genet Res. 1994 Jun;63(3):213–227. doi: 10.1017/s0016672300032365. [DOI] [PubMed] [Google Scholar]
- Dawson K. J. Evolutionarily stable mutation rates. J Theor Biol. 1998 Sep 7;194(1):143–157. doi: 10.1006/jtbi.1998.0752. [DOI] [PubMed] [Google Scholar]
- Dawson K. J. The dynamics of infinitesimally rare alleles, applied to the evolution of mutation rates and the expression of deleterious mutations. Theor Popul Biol. 1999 Feb;55(1):1–22. doi: 10.1006/tpbi.1998.1375. [DOI] [PubMed] [Google Scholar]
- Drake J. W., Charlesworth B., Charlesworth D., Crow J. F. Rates of spontaneous mutation. Genetics. 1998 Apr;148(4):1667–1686. doi: 10.1093/genetics/148.4.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holsinger K. E., Feldman M. W., Altenberg L. Selection for increased mutation rates with fertility differences between matings. Genetics. 1986 Apr;112(4):909–922. doi: 10.1093/genetics/112.4.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holsinger K. E., Feldman M. W. Modifiers of mutation rate: Evolutionary optimum with complete selfing. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6732–6734. doi: 10.1073/pnas.80.21.6732. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishii K., Matsuda H., Iwasa Y., Sasaki A. Evolutionarily stable mutation rate in a periodically changing environment. Genetics. 1989 Jan;121(1):163–174. doi: 10.1093/genetics/121.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaplan N. L., Hudson R. R., Langley C. H. The "hitchhiking effect" revisited. Genetics. 1989 Dec;123(4):887–899. doi: 10.1093/genetics/123.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keightley P. D., Caballero A. Genomic mutation rates for lifetime reproductive output and lifespan in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3823–3827. doi: 10.1073/pnas.94.8.3823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kibota T. T., Lynch M. Estimate of the genomic mutation rate deleterious to overall fitness in E. coli. Nature. 1996 Jun 20;381(6584):694–696. doi: 10.1038/381694a0. [DOI] [PubMed] [Google Scholar]
- LeClerc J. E., Li B., Payne W. L., Cebula T. A. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science. 1996 Nov 15;274(5290):1208–1211. doi: 10.1126/science.274.5290.1208. [DOI] [PubMed] [Google Scholar]
- MUKAI T. THE GENETIC STRUCTURE OF NATURAL POPULATIONS OF DROSOPHILA MELANOGASTER. I. SPONTANEOUS MUTATION RATE OF POLYGENES CONTROLLING VIABILITY. Genetics. 1964 Jul;50:1–19. doi: 10.1093/genetics/50.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McVean G. T., Hurst L. D. Evidence for a selectively favourable reduction in the mutation rate of the X chromosome. Nature. 1997 Mar 27;386(6623):388–392. doi: 10.1038/386388a0. [DOI] [PubMed] [Google Scholar]
- Mukai T., Chigusa S. I., Mettler L. E., Crow J. F. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics. 1972 Oct;72(2):335–355. doi: 10.1093/genetics/72.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nordborg M., Charlesworth B., Charlesworth D. The effect of recombination on background selection. Genet Res. 1996 Apr;67(2):159–174. doi: 10.1017/s0016672300033619. [DOI] [PubMed] [Google Scholar]
- Nöthel H. Adaptation of Drosophila melanogaster populations to high mutation pressure: evolutionary adjustment of mutation rates. Proc Natl Acad Sci U S A. 1987 Feb;84(4):1045–1049. doi: 10.1073/pnas.84.4.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohnishi O. Spontaneous and ethyl methanesulfonate-induced mutations controlling viability in Drosophila melanogaster. II. Homozygous effect of polygenic mutations. Genetics. 1977 Nov;87(3):529–545. doi: 10.1093/genetics/87.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohta T. Slightly deleterious mutant substitutions in evolution. Nature. 1973 Nov 9;246(5428):96–98. doi: 10.1038/246096a0. [DOI] [PubMed] [Google Scholar]
- Ohta T, Gillespie JH. Development of Neutral and Nearly Neutral Theories. Theor Popul Biol. 1996 Apr;49(2):128–142. doi: 10.1006/tpbi.1996.0007. [DOI] [PubMed] [Google Scholar]
- Paquin C., Adams J. Frequency of fixation of adaptive mutations is higher in evolving diploid than haploid yeast populations. Nature. 1983 Apr 7;302(5908):495–500. doi: 10.1038/302495a0. [DOI] [PubMed] [Google Scholar]
- Peck J. R. A ruby in the rubbish: beneficial mutations, deleterious mutations and the evolution of sex. Genetics. 1994 Jun;137(2):597–606. doi: 10.1093/genetics/137.2.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peck J. R., Eyre-Walker A. Evolutionary genetics. The muddle about mutations. Nature. 1997 May 8;387(6629):135–136. doi: 10.1038/387135a0. [DOI] [PubMed] [Google Scholar]
- Smith J. M., Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974 Feb;23(1):23–35. [PubMed] [Google Scholar]
- Sniegowski P. D., Gerrish P. J., Lenski R. E. Evolution of high mutation rates in experimental populations of E. coli. Nature. 1997 Jun 12;387(6634):703–705. doi: 10.1038/42701. [DOI] [PubMed] [Google Scholar]
- Taddei F., Radman M., Maynard-Smith J., Toupance B., Gouyon P. H., Godelle B. Role of mutator alleles in adaptive evolution. Nature. 1997 Jun 12;387(6634):700–702. doi: 10.1038/42696. [DOI] [PubMed] [Google Scholar]
- Wolfe K. H., Sharp P. M. Mammalian gene evolution: nucleotide sequence divergence between mouse and rat. J Mol Evol. 1993 Oct;37(4):441–456. doi: 10.1007/BF00178874. [DOI] [PubMed] [Google Scholar]