Adapt globally, act locally: the effect of selective sweeps on bacterial sequence diversity (original) (raw)

Abstract

Previous studies have shown that genetic exchange in bacteria is too rare to prevent neutral sequence divergence between ecological populations. That is, despite genetic exchange, each population should diverge into its own DNA sequence-similarity cluster. In those studies, each selective sweep was limited to acting within a single ecological population. Here we postulate the existence of globally adaptive mutations, which may confer a selective advantage to all ecological populations constituting a metapopulation. Such adaptations cause global selective sweeps, which purge the divergence both within and between populations. We found that the effect of recurrent global selective sweeps on neutral sequence divergence is highly dependent on the mechanism of genetic exchange. Global selective sweeps can prevent populations from reaching high levels of neutral sequence divergence, but they cannot cause two populations to become identical in neutral sequence characters. The model supports the earlier conclusion that each ecological population of bacteria should form its own distinct DNA sequence-similarity cluster.

Full Text

The Full Text of this article is available as a PDF (241.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ATWOOD K. C., SCHNEIDER L. K., RYAN F. J. Periodic selection in Escherichia coli. Proc Natl Acad Sci U S A. 1951 Mar;37(3):146–155. doi: 10.1073/pnas.37.3.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balmelli T., Piffaretti J. C. Analysis of the genetic polymorphism of Borrelia burgdorferi sensu lato by multilocus enzyme electrophoresis. Int J Syst Bacteriol. 1996 Jan;46(1):167–172. doi: 10.1099/00207713-46-1-167. [DOI] [PubMed] [Google Scholar]
  3. Boivin-Jahns V., Ruimy R., Bianchi A., Daumas S., Christen R. Bacterial diversity in a deep-subsurface clay environment. Appl Environ Microbiol. 1996 Sep;62(9):3405–3412. doi: 10.1128/aem.62.9.3405-3412.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Britschgi T. B., Giovannoni S. J. Phylogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing. Appl Environ Microbiol. 1991 Jun;57(6):1707–1713. doi: 10.1128/aem.57.6.1707-1713.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Guttman D. S., Dykhuizen D. E. Clonal divergence in Escherichia coli as a result of recombination, not mutation. Science. 1994 Nov 25;266(5189):1380–1383. doi: 10.1126/science.7973728. [DOI] [PubMed] [Google Scholar]
  6. Guttman D. S., Dykhuizen D. E. Detecting selective sweeps in naturally occurring Escherichia coli. Genetics. 1994 Dec;138(4):993–1003. doi: 10.1093/genetics/138.4.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Huber R., Burggraf S., Mayer T., Barns S. M., Rossnagel P., Stetter K. O. Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis. Nature. 1995 Jul 6;376(6535):57–58. doi: 10.1038/376057a0. [DOI] [PubMed] [Google Scholar]
  8. Hudson R. R., Kaplan N. L. The coalescent process in models with selection and recombination. Genetics. 1988 Nov;120(3):831–840. doi: 10.1093/genetics/120.3.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Humbert O., Prudhomme M., Hakenbeck R., Dowson C. G., Claverys J. P. Homeologous recombination and mismatch repair during transformation in Streptococcus pneumoniae: saturation of the Hex mismatch repair system. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9052–9056. doi: 10.1073/pnas.92.20.9052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kaplan N. L., Darden T., Hudson R. R. The coalescent process in models with selection. Genetics. 1988 Nov;120(3):819–829. doi: 10.1093/genetics/120.3.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kaplan N. L., Hudson R. R., Langley C. H. The "hitchhiking effect" revisited. Genetics. 1989 Dec;123(4):887–899. doi: 10.1093/genetics/123.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Koch A. L. The pertinence of the periodic selection phenomenon to prokaryote evolution. Genetics. 1974 May;77(1):127–142. doi: 10.1093/genetics/77.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Levin B. R. Periodic selection, infectious gene exchange and the genetic structure of E. coli populations. Genetics. 1981 Sep;99(1):1–23. doi: 10.1093/genetics/99.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Murray R. G., Stackebrandt E. Taxonomic note: implementation of the provisional status Candidatus for incompletely described procaryotes. Int J Syst Bacteriol. 1995 Jan;45(1):186–187. doi: 10.1099/00207713-45-1-186. [DOI] [PubMed] [Google Scholar]
  15. Ohkuma M., Kudo T. Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Appl Environ Microbiol. 1996 Feb;62(2):461–468. doi: 10.1128/aem.62.2.461-468.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pace N. R. A molecular view of microbial diversity and the biosphere. Science. 1997 May 2;276(5313):734–740. doi: 10.1126/science.276.5313.734. [DOI] [PubMed] [Google Scholar]
  17. Palys T., Nakamura L. K., Cohan F. M. Discovery and classification of ecological diversity in the bacterial world: the role of DNA sequence data. Int J Syst Bacteriol. 1997 Oct;47(4):1145–1156. doi: 10.1099/00207713-47-4-1145. [DOI] [PubMed] [Google Scholar]
  18. Smith G. R. Homologous recombination in procaryotes. Microbiol Rev. 1988 Mar;52(1):1–28. doi: 10.1128/mr.52.1.1-28.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Smith J. M., Smith N. H., O'Rourke M., Spratt B. G. How clonal are bacteria? Proc Natl Acad Sci U S A. 1993 May 15;90(10):4384–4388. doi: 10.1073/pnas.90.10.4384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Vandamme P., Pot B., Gillis M., de Vos P., Kersters K., Swings J. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev. 1996 Jun;60(2):407–438. doi: 10.1128/mr.60.2.407-438.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wright S. Evolution in Mendelian Populations. Genetics. 1931 Mar;16(2):97–159. doi: 10.1093/genetics/16.2.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zawadzki P., Cohan F. M. The size and continuity of DNA segments integrated in Bacillus transformation. Genetics. 1995 Dec;141(4):1231–1243. doi: 10.1093/genetics/141.4.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]