The G-protein beta-subunit GPB-2 in Caenorhabditis elegans regulates the G(o)alpha-G(q)alpha signaling network through interactions with the regulator of G-protein signaling proteins EGL-10 and EAT-16 (original) (raw)

Abstract

The genome of Caenorhabditis elegans harbors two genes for G-protein beta-subunits. Here, we describe the characterization of the second G-protein beta-subunit gene gpb-2. In contrast to gpb-1, gpb-2 is not an essential gene even though, like gpb-1, gpb-2 is expressed during development, in the nervous system, and in muscle cells. A loss-of-function mutation in gpb-2 produces a variety of behavioral defects, including delayed egg laying and reduced pharyngeal pumping. Genetic analysis shows that GPB-2 interacts with the GOA-1 (homologue of mammalian G(o)alpha) and EGL-30 (homologue of mammalian G(q)alpha) signaling pathways. GPB-2 is most similar to the divergent mammalian Gbeta5 subunit, which has been shown to mediate a specific interaction with a Ggamma-subunit-like (GGL) domain of RGS proteins. We show here that GPB-2 physically and genetically interacts with the GGL-containing RGS proteins EGL-10 and EAT-16. Taken together, our results suggest that GPB-2 works in concert with the RGS proteins EGL-10 and EAT-16 to regulate GOA-1 (G(o)alpha) and EGL-30 (G(q)alpha) signaling.

Full Text

The Full Text of this article is available as a PDF (340.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avery L. The genetics of feeding in Caenorhabditis elegans. Genetics. 1993 Apr;133(4):897–917. doi: 10.1093/genetics/133.4.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berridge M. J. Inositol trisphosphate and diacylglycerol as second messengers. Biochem J. 1984 Jun 1;220(2):345–360. doi: 10.1042/bj2200345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brundage L., Avery L., Katz A., Kim U. J., Mendel J. E., Sternberg P. W., Simon M. I. Mutations in a C. elegans Gqalpha gene disrupt movement, egg laying, and viability. Neuron. 1996 May;16(5):999–1009. doi: 10.1016/s0896-6273(00)80123-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chalfie M., Tu Y., Euskirchen G., Ward W. W., Prasher D. C. Green fluorescent protein as a marker for gene expression. Science. 1994 Feb 11;263(5148):802–805. doi: 10.1126/science.8303295. [DOI] [PubMed] [Google Scholar]
  5. Chase D. L., Patikoglou G. A., Koelle M. R. Two RGS proteins that inhibit Galpha(o) and Galpha(q) signaling in C. elegans neurons require a Gbeta(5)-like subunit for function. Curr Biol. 2001 Feb 20;11(4):222–231. doi: 10.1016/s0960-9822(01)00071-9. [DOI] [PubMed] [Google Scholar]
  6. Clapham D. E., Neer E. J. New roles for G-protein beta gamma-dimers in transmembrane signalling. Nature. 1993 Sep 30;365(6445):403–406. doi: 10.1038/365403a0. [DOI] [PubMed] [Google Scholar]
  7. Eeckman F. H., Durbin R. ACeDB and macace. Methods Cell Biol. 1995;48:583–605. [PubMed] [Google Scholar]
  8. Guan K. L., Han M. A G-protein signaling network mediated by an RGS protein. Genes Dev. 1999 Jul 15;13(14):1763–1767. doi: 10.1101/gad.13.14.1763. [DOI] [PubMed] [Google Scholar]
  9. Hajdu-Cronin Y. M., Chen W. J., Patikoglou G., Koelle M. R., Sternberg P. W. Antagonism between G(o)alpha and G(q)alpha in Caenorhabditis elegans: the RGS protein EAT-16 is necessary for G(o)alpha signaling and regulates G(q)alpha activity. Genes Dev. 1999 Jul 15;13(14):1780–1793. doi: 10.1101/gad.13.14.1780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Han M., Sternberg P. W. Analysis of dominant-negative mutations of the Caenorhabditis elegans let-60 ras gene. Genes Dev. 1991 Dec;5(12A):2188–2198. doi: 10.1101/gad.5.12a.2188. [DOI] [PubMed] [Google Scholar]
  11. Jansen G., Hazendonk E., Thijssen K. L., Plasterk R. H. Reverse genetics by chemical mutagenesis in Caenorhabditis elegans. Nat Genet. 1997 Sep;17(1):119–121. doi: 10.1038/ng0997-119. [DOI] [PubMed] [Google Scholar]
  12. Jansen G., Thijssen K. L., Werner P., van der Horst M., Hazendonk E., Plasterk R. H. The complete family of genes encoding G proteins of Caenorhabditis elegans. Nat Genet. 1999 Apr;21(4):414–419. doi: 10.1038/7753. [DOI] [PubMed] [Google Scholar]
  13. Kaziro Y., Itoh H., Kozasa T., Nakafuku M., Satoh T. Structure and function of signal-transducing GTP-binding proteins. Annu Rev Biochem. 1991;60:349–400. doi: 10.1146/annurev.bi.60.070191.002025. [DOI] [PubMed] [Google Scholar]
  14. Koelle M. R. A new family of G-protein regulators - the RGS proteins. Curr Opin Cell Biol. 1997 Apr;9(2):143–147. doi: 10.1016/s0955-0674(97)80055-5. [DOI] [PubMed] [Google Scholar]
  15. Koelle M. R., Horvitz H. R. EGL-10 regulates G protein signaling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Cell. 1996 Jan 12;84(1):115–125. doi: 10.1016/s0092-8674(00)80998-8. [DOI] [PubMed] [Google Scholar]
  16. Lackner M. R., Nurrish S. J., Kaplan J. M. Facilitation of synaptic transmission by EGL-30 Gqalpha and EGL-8 PLCbeta: DAG binding to UNC-13 is required to stimulate acetylcholine release. Neuron. 1999 Oct;24(2):335–346. doi: 10.1016/s0896-6273(00)80848-x. [DOI] [PubMed] [Google Scholar]
  17. Levay K., Cabrera J. L., Satpaev D. K., Slepak V. Z. Gbeta5 prevents the RGS7-Galphao interaction through binding to a distinct Ggamma-like domain found in RGS7 and other RGS proteins. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2503–2507. doi: 10.1073/pnas.96.5.2503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mello C., Fire A. DNA transformation. Methods Cell Biol. 1995;48:451–482. [PubMed] [Google Scholar]
  19. Mendel J. E., Korswagen H. C., Liu K. S., Hajdu-Cronin Y. M., Simon M. I., Plasterk R. H., Sternberg P. W. Participation of the protein Go in multiple aspects of behavior in C. elegans. Science. 1995 Mar 17;267(5204):1652–1655. doi: 10.1126/science.7886455. [DOI] [PubMed] [Google Scholar]
  20. Miller K. G., Emerson M. D., Rand J. B. Goalpha and diacylglycerol kinase negatively regulate the Gqalpha pathway in C. elegans. Neuron. 1999 Oct;24(2):323–333. doi: 10.1016/s0896-6273(00)80847-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nurrish S., Ségalat L., Kaplan J. M. Serotonin inhibition of synaptic transmission: Galpha(0) decreases the abundance of UNC-13 at release sites. Neuron. 1999 Sep;24(1):231–242. doi: 10.1016/s0896-6273(00)80835-1. [DOI] [PubMed] [Google Scholar]
  22. Robatzek M., Niacaris T., Steger K., Avery L., Thomas J. H. eat-11 encodes GPB-2, a Gbeta(5) ortholog that interacts with G(o)alpha and G(q)alpha to regulate C. elegans behavior. Curr Biol. 2001 Feb 20;11(4):288–293. doi: 10.1016/s0960-9822(01)00074-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Simon M. I., Strathmann M. P., Gautam N. Diversity of G proteins in signal transduction. Science. 1991 May 10;252(5007):802–808. doi: 10.1126/science.1902986. [DOI] [PubMed] [Google Scholar]
  24. Snow B. E., Betts L., Mangion J., Sondek J., Siderovski D. P. Fidelity of G protein beta-subunit association by the G protein gamma-subunit-like domains of RGS6, RGS7, and RGS11. Proc Natl Acad Sci U S A. 1999 May 25;96(11):6489–6494. doi: 10.1073/pnas.96.11.6489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Snow B. E., Krumins A. M., Brothers G. M., Lee S. F., Wall M. A., Chung S., Mangion J., Arya S., Gilman A. G., Siderovski D. P. A G protein gamma subunit-like domain shared between RGS11 and other RGS proteins specifies binding to Gbeta5 subunits. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13307–13312. doi: 10.1073/pnas.95.22.13307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sulston J. E., Horvitz H. R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol. 1977 Mar;56(1):110–156. doi: 10.1016/0012-1606(77)90158-0. [DOI] [PubMed] [Google Scholar]
  27. Ségalat L., Elkes D. A., Kaplan J. M. Modulation of serotonin-controlled behaviors by Go in Caenorhabditis elegans. Science. 1995 Mar 17;267(5204):1648–1651. doi: 10.1126/science.7886454. [DOI] [PubMed] [Google Scholar]
  28. Watson A. J., Aragay A. M., Slepak V. Z., Simon M. I. A novel form of the G protein beta subunit Gbeta5 is specifically expressed in the vertebrate retina. J Biol Chem. 1996 Nov 8;271(45):28154–28160. doi: 10.1074/jbc.271.45.28154. [DOI] [PubMed] [Google Scholar]
  29. Watson A. J., Katz A., Simon M. I. A fifth member of the mammalian G-protein beta-subunit family. Expression in brain and activation of the beta 2 isotype of phospholipase C. J Biol Chem. 1994 Sep 2;269(35):22150–22156. [PubMed] [Google Scholar]
  30. Watson N., Linder M. E., Druey K. M., Kehrl J. H., Blumer K. J. RGS family members: GTPase-activating proteins for heterotrimeric G-protein alpha-subunits. Nature. 1996 Sep 12;383(6596):172–175. doi: 10.1038/383172a0. [DOI] [PubMed] [Google Scholar]
  31. Way J. C., Wang L., Run J. Q., Wang A. The mec-3 gene contains cis-acting elements mediating positive and negative regulation in cells produced by asymmetric cell division in Caenorhabditis elegans. Genes Dev. 1991 Dec;5(12A):2199–2211. doi: 10.1101/gad.5.12a.2199. [DOI] [PubMed] [Google Scholar]
  32. Witherow D. S., Wang Q., Levay K., Cabrera J. L., Chen J., Willars G. B., Slepak V. Z. Complexes of the G protein subunit gbeta 5 with the regulators of G protein signaling RGS7 and RGS9. Characterization in native tissues and in transfected cells. J Biol Chem. 2000 Aug 11;275(32):24872–24880. doi: 10.1074/jbc.M001535200. [DOI] [PubMed] [Google Scholar]
  33. Zwaal R. R., Ahringer J., van Luenen H. G., Rushforth A., Anderson P., Plasterk R. H. G proteins are required for spatial orientation of early cell cleavages in C. elegans embryos. Cell. 1996 Aug 23;86(4):619–629. doi: 10.1016/s0092-8674(00)80135-x. [DOI] [PubMed] [Google Scholar]
  34. van der Voorn L., Gebbink M., Plasterk R. H., Ploegh H. L. Characterization of a G-protein beta-subunit gene from the nematode Caenorhabditis elegans. J Mol Biol. 1990 May 5;213(1):17–26. doi: 10.1016/s0022-2836(05)80118-4. [DOI] [PubMed] [Google Scholar]