Selection at the amino acid level can influence synonymous codon usage: implications for the study of codon adaptation in plastid genes (original) (raw)

Abstract

A previously employed method that uses the composition of noncoding DNA as the basis of a test for selection between synonymous codons in plastid genes is reevaluated. The test requires the assumption that in the absence of selective differences between synonymous codons the composition of silent sites in coding sequences will match the composition of noncoding sites. It is demonstrated here that this assumption is not necessarily true and, more generally, that using compositional properties to draw inferences about selection on silent changes in coding sequences is much more problematic than commonly assumed. This is so because selection on nonsynonymous changes can influence the composition of synonymous sites (i.e., codon usage) in a complex manner, meaning that the composition biases of different silent sites, including neutral noncoding DNA, are not comparable. These findings also draw into question the commonly utilized method of investigating how selection to increase translation accuracy influences codon usage. The work then focuses on implications for studies that assess codon adaptation, which is selection on codon usage to enhance translation rate, in plastid genes. A new test that does not require the use of noncoding DNA is proposed and applied. The results of this test suggest that far fewer plastid genes display codon adaptation than previously thought.

Full Text

The Full Text of this article is available as a PDF (225.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi J., Waddell P. J., Martin W., Hasegawa M. Plastid genome phylogeny and a model of amino acid substitution for proteins encoded by chloroplast DNA. J Mol Evol. 2000 Apr;50(4):348–358. doi: 10.1007/s002399910038. [DOI] [PubMed] [Google Scholar]
  2. Akashi H., Eyre-Walker A. Translational selection and molecular evolution. Curr Opin Genet Dev. 1998 Dec;8(6):688–693. doi: 10.1016/s0959-437x(98)80038-5. [DOI] [PubMed] [Google Scholar]
  3. Akashi H. Inferring weak selection from patterns of polymorphism and divergence at "silent" sites in Drosophila DNA. Genetics. 1995 Feb;139(2):1067–1076. doi: 10.1093/genetics/139.2.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Akashi H. Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics. 1994 Mar;136(3):927–935. doi: 10.1093/genetics/136.3.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Akashi H. Within- and between-species DNA sequence variation and the 'footprint' of natural selection. Gene. 1999 Sep 30;238(1):39–51. doi: 10.1016/s0378-1119(99)00294-2. [DOI] [PubMed] [Google Scholar]
  6. Andersson S. G., Kurland C. G. Codon preferences in free-living microorganisms. Microbiol Rev. 1990 Jun;54(2):198–210. doi: 10.1128/mr.54.2.198-210.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bulmer M. The selection-mutation-drift theory of synonymous codon usage. Genetics. 1991 Nov;129(3):897–907. doi: 10.1093/genetics/129.3.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carulli J. P., Krane D. E., Hartl D. L., Ochman H. Compositional heterogeneity and patterns of molecular evolution in the Drosophila genome. Genetics. 1993 Jul;134(3):837–845. doi: 10.1093/genetics/134.3.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Duret L., Mouchiroud D. Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4482–4487. doi: 10.1073/pnas.96.8.4482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goldman N., Yang Z. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol. 1994 Sep;11(5):725–736. doi: 10.1093/oxfordjournals.molbev.a040153. [DOI] [PubMed] [Google Scholar]
  11. Gu X., Li W. H. Estimation of evolutionary distances under stationary and nonstationary models of nucleotide substitution. Proc Natl Acad Sci U S A. 1998 May 26;95(11):5899–5905. doi: 10.1073/pnas.95.11.5899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kliman R. M., Hey J. The effects of mutation and natural selection on codon bias in the genes of Drosophila. Genetics. 1994 Aug;137(4):1049–1056. doi: 10.1093/genetics/137.4.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Labate J. A., Biermann C. H., Eanes W. F. Nucleotide variation at the runt locus in Drosophila melanogaster and Drosophila simulans. Mol Biol Evol. 1999 Jun;16(6):724–731. doi: 10.1093/oxfordjournals.molbev.a026157. [DOI] [PubMed] [Google Scholar]
  14. Lewontin R. C. Inferring the number of evolutionary events from DNA coding sequence differences. Mol Biol Evol. 1989 Jan;6(1):15–32. doi: 10.1093/oxfordjournals.molbev.a040532. [DOI] [PubMed] [Google Scholar]
  15. Liò P., Goldman N. Models of molecular evolution and phylogeny. Genome Res. 1998 Dec;8(12):1233–1244. doi: 10.1101/gr.8.12.1233. [DOI] [PubMed] [Google Scholar]
  16. McDonald J. H., Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. doi: 10.1038/351652a0. [DOI] [PubMed] [Google Scholar]
  17. Morton B. R. Chloroplast DNA codon use: evidence for selection at the psb A locus based on tRNA availability. J Mol Evol. 1993 Sep;37(3):273–280. doi: 10.1007/BF00175504. [DOI] [PubMed] [Google Scholar]
  18. Morton B. R. Neighboring base composition and transversion/transition bias in a comparison of rice and maize chloroplast noncoding regions. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9717–9721. doi: 10.1073/pnas.92.21.9717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Morton B. R. Selection on the codon bias of chloroplast and cyanelle genes in different plant and algal lineages. J Mol Evol. 1998 Apr;46(4):449–459. doi: 10.1007/pl00006325. [DOI] [PubMed] [Google Scholar]
  20. Muse S. V., Gaut B. S. A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. Mol Biol Evol. 1994 Sep;11(5):715–724. doi: 10.1093/oxfordjournals.molbev.a040152. [DOI] [PubMed] [Google Scholar]
  21. Percudani R., Ottonello S. Selection at the wobble position of codons read by the same tRNA in Saccharomyces cerevisiae. Mol Biol Evol. 1999 Dec;16(12):1752–1762. doi: 10.1093/oxfordjournals.molbev.a026087. [DOI] [PubMed] [Google Scholar]
  22. Sharp P. M. Determinants of DNA sequence divergence between Escherichia coli and Salmonella typhimurium: codon usage, map position, and concerted evolution. J Mol Evol. 1991 Jul;33(1):23–33. doi: 10.1007/BF02100192. [DOI] [PubMed] [Google Scholar]
  23. Sharp P. M., Li W. H. The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987 Feb 11;15(3):1281–1295. doi: 10.1093/nar/15.3.1281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sueoka N. Two aspects of DNA base composition: G+C content and translation-coupled deviation from intra-strand rule of A = T and G = C. J Mol Evol. 1999 Jul;49(1):49–62. doi: 10.1007/pl00006534. [DOI] [PubMed] [Google Scholar]
  25. Tautz D., Nigro L. Microevolutionary divergence pattern of the segmentation gene hunchback in Drosophila. Mol Biol Evol. 1998 Nov;15(11):1403–1411. doi: 10.1093/oxfordjournals.molbev.a025868. [DOI] [PubMed] [Google Scholar]
  26. Wolfe K. H., Morden C. W., Ems S. C., Palmer J. D. Rapid evolution of the plastid translational apparatus in a nonphotosynthetic plant: loss or accelerated sequence evolution of tRNA and ribosomal protein genes. J Mol Evol. 1992 Oct;35(4):304–317. doi: 10.1007/BF00161168. [DOI] [PubMed] [Google Scholar]
  27. Yang Z., Nielsen R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol. 2000 Jan;17(1):32–43. doi: 10.1093/oxfordjournals.molbev.a026236. [DOI] [PubMed] [Google Scholar]
  28. Yang Z., Nielsen R., Hasegawa M. Models of amino acid substitution and applications to mitochondrial protein evolution. Mol Biol Evol. 1998 Dec;15(12):1600–1611. doi: 10.1093/oxfordjournals.molbev.a025888. [DOI] [PubMed] [Google Scholar]